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Differentiation tests for the mean shape and its variance

Statistical shape analysis

Landmarks

Suppose that we want to study n objects by means of statistical
shape analysis.

A landmark is a point of correspondence on each object that
matches between and within populations.

Denote the number of landmarks by k .

Every object oi in a space V of dimension m is thus represented in
a space of dimension k ·m by a set of landmarks:

∀i = 1 . . . n, oi = {l1 . . . lk}, lj ∈ Rm. (1)
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Differentiation tests for the mean shape and its variance

Statistical shape analysis

Removing the scale

1 For every i , i = 1, ..., n, the size of each object is determined
as the euclidian norm of their landmarks.

‖oi‖ =

√√√√ k∑
j=1

‖l ij ‖2
m. (2)

2 The landmarks are standardized by dividing them by the size
of their object:

l̃ ij =
l ij
‖oi‖

. (3)
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Differentiation tests for the mean shape and its variance

Statistical shape analysis

Removing the location

To remove the location of the object, the landmarks are centered
by the following procedure:

1 For every i , i = 1, ..., n, we compute the the arithmetic mean
z i of the k standardized landmarks of the ith object :

z i =
1

k

k∑
j=1

l̃ ij (4)

2 We center all the landmarks by subtracting this mean:

l
i
j = l ij − z i (5)
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Differentiation tests for the mean shape and its variance

Statistical shape analysis

Remark

We do not need to remove rotation in our application, since we use
MRI images of the tumors which are frontal or transversal images.

We have no rotated images in our sample.

Hence, we are able to work completely in the standard
three-dimensional space with the euclidian norm.

We do not need any further procrustes analysis nor any
complicated stochastic geometry. It is easy to show that the partial
procrustean distance is equivalent to the euclidean distance in our
case.
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Differentiation tests for the mean shape and its variance

Statistical shape analysis

The mean shape

To compare the standardized and centered sets of landmarks, we
need to define the mean shape of all the objects and a distance
function which allows us to evaluate how ”near” every object is
from this mean shape.

The term ”mean” is here used in the sense of Fréchet (1948).

If X demotes a random variable defined on a probability space
(Ω,F ,P) with values in a metric space (Ξ, d), an element m ∈ Ξ
is called a mean of x1, x2, ..., xk ∈ Ξ if

k∑
j=1

d(xj ,m)2 = inf
α∈Ξ

k∑
j=1

d(xj , α)2. (6)

That means that the mean shape is defined as the shape with the
smallest variance of all shapes in a group of objects.
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Differentiation tests for the mean shape and its variance

Statistical shape analysis

The algorithm of Ziezold (1994)

To begin, we fix the mean of all the standardized and centered

objects as starting value: m̃0 = 1
n

n∑
i=1

o i .

We then undertake the following steps for i = 1, . . . , n
1

m̃ 7→ wi (m̃) =

{ 〈m̃,oi 〉
|〈m̃,oi 〉| if 〈m̃, oi 〉 6= 0

1 if 〈m̃, oi 〉 = 0
(7)

2

m̃ 7→ T (m̃) =
1

n

n∑
i=1

wi (m̃)oi (8)

3

m̃r = T (m̃r−1), r = 1, 2, . . . (9)

The stopping rule is m̃ = T (m̃).
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Differentiation tests for the mean shape and its variance

Renal tumors in early childhood

Renal tumors in early childhood

Wilms-tumors (nephroblastoma) growing next to the kidney.

Genetic cause. There are four types of tissue (a, b, c, d) and
three stages of development (I, II, III).

Many renal tumors in the childhood are diagnosed as Wilms
(130 per year).

Renal cell carcinoma growing also next to the kidney.

Are rare in childhood (12 per year) but frequent for adults.

Neuroblastoma growing next to nerve tissue.

Quite frequent (80 per year).

Clear cell carcinoma growing next to bones.

Rare (12 per year).
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Differentiation tests for the mean shape and its variance

Experimental results

The data

Research sample:

Magnetic resonance images of 83 cases of tumors in frontal
perspective (69 Wilms, 6 neuroblastoma, 5 clear cell
carcinoma and 3 renal cell carcinoma).

MRI image of a renal tumor in frontal view.
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Differentiation tests for the mean shape and its variance

Experimental results

The three-dimensional object

Three-dimensional model of a tumor.
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Differentiation tests for the mean shape and its variance

Experimental results

The platonic body C60

For every object, we consider the platonic body C60 whose center
lies in the center of the object. This platonic body has 60 edges
which give us 60 three-dimensional landmarks for every object.
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Experimental results

The landmarks

We take as landmarks the 60 points on the border of each object
closest to the edges of the platonic body.

Only real measured points on the border of the tumor are taken,
the approximated part of the three-dimensional object is not used.
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Differentiation tests for the mean shape and its variance

The differentiation tests

Ziezold’s test for differentiation of the types of tumors

We consider to subsets A and B of the sample of size n and N − n
respectively.

The subset A is a realization of a distribution P and the subset B
is an independent realization of a distribution Q.

The test hypotheses are:

Hypothesis: H0 : P = Q
Alternative: H1 : P 6= Q
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Differentiation tests for the mean shape and its variance

The differentiation tests

Ziezold’s test for differentiation of the types of tumors

1 Computing the mean shape m0 of subset A.

2 Computing the u-value

u0 =
n∑

j=1

card
(
bk : d(bk ,m0) < d(aj ,m0)

)
.

3 Determination of all the possibilities of dividing the set into
two subset with the same proportion.

4 Comparing the u0-value to all possible u-values. Computing
the rank (small u-value mean a small rank).

5 Calculate the p-value for H0. pr=i = 1

(Nn)
for i = 1, . . . ,

(N
n

)
,

where r is the rank for which we assume a uniform
distribution.
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Differentiation tests for the mean shape and its variance

The differentiation tests

Wilms tumors against non Wilms tumors

Comparing the Wilms tumors to the mean shape of the
non Wilms tumors.

u = 185 rank = 970

Random sample: n = 1000 p = 0, 97.

Comparing the non Wilms tumors to the mean shape of
the Wilms tumors.

u = 257 rank = 1− 2

Random sample: n = 1000 p = 0, 002.
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Differentiation tests for the mean shape and its variance

The differentiation tests

Mean variance of a set of shapes

We define the mean variance in the sense of Fréchet of a set of
objects as the average of the distances to the mean shape.
If X denotes a random variable defined on a probability space
(Ω,F ,P) with values in a metric space (Ξ, d) and m ∈ Ξ is the
mean of x1, x2, ..., xk ∈ Ξ, σ2 is the variance of x1, x2, ..., xk ∈ Ξ if

k∑
j=1

d(d(xj ,m)2, σ2)2 = inf
α∈Ξ

k∑
j=1

d(d(xj ,m)2, α)2. (10)

That means that the variance is defined as the mean of the
distances between the ”mean shape” and the objects.
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The differentiation tests

The variance test

In this section we propose a test to compare the mean variance of
two groups of objects.

step 1: Definition of the set of objects

There is a set M that can be divided into a subset A, realisation of
a distribution P with variance σ2

1 and a subset B, realisation of a
distribution Q with variance σ2

2.

Hypothesis: H0 : σ2
1 = σ2

2

Alternative: H1 : σ2
1 6= σ2

2
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The differentiation tests

The variance test

step 2: Computation of the variance

The variance is calculated by means of a straightforward
generalisation of the algorithm of Ziezold (1994).

step 3: Computation of the F -value

F =
|σ̂2

1|
|σ̂2

2|
.

step 4: Determination of all the possibilities of dividing the
set into two subsets with given sizes

step 5: Comparison of the F -value to all possible F -values.
Computation of the rank (small F-value mean a small rank).

24 / 28



Differentiation tests for the mean shape and its variance

The differentiation tests

The variance test

step 6: Computation of the p-value for H0

pr=i = 1− 1

(Nn)
for i = 1, . . . ,

(N
n

)
, where r is the rank for which we

assume a rectangular distribution on the right side and pr=i = 1

(Nn)
on the left side.
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The differentiation tests

Results of variance test

For the renal tumours, the F -value for the differentiation of the
variance of the group of nephroblastomas to the group of
neuroblastomas is 1.28128 and the rank is 315.
So the corresponding p-value is 1− 0.315 = 0.685 and we have to
accept the null hyptothesis that the variance is similiar in both
groups.
Both kind of tumours seem to have more or less the same
dispersion and a possible difference in the dispersion can be
excluded as cause for difficulties in distinguishing the two kinds of
tumours.
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Conclusion

Three-dimensional statistical shape analysis seems to be a good
tool for differentiating the renal tumors appearing in early
childhood.

Wilms tumors can be clearly differentiated from
neuroblastomas.

It is possible to differentiate the whole set of non-Wilms
tumors from the mean shape of Wilms tumors.

But we cannot use statistical shape analysis to say if a given
general tumor is not a Wilms tumor.

The variance of the set of Wilms tumors is not significantly
different from the variance of the set of the other tumors.
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