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Approximate Bayesian Computation (ABC)

Assumptions:

I Dataset X is sampled from a known statistical model M(φ).

I Prior distribution for φ has density π.

I We can efficiently simulate from π and from M(φ).

Goal:
Approximate the posterior Π(φ|X ) without computing the

likelihood.

“Exact” Solution (Algorithm 0):

1. Simulate i.i.d. φi ∼ π, for i = 1, . . . ,N.

2. For each i , simulate a dataset Xi ∼ M(φi ).

3. If Xi = X , retain φi , otherwise discard.

The retained values form a random sample from Π(φ|X ). By
making N sufficiently large, any property of Π can be
approximated to any desired accuracy.



A more realistic ABC

Equality of Xi with X is usually rare, so Algorithm 0 is impractical.
Instead we require only that Xi and X are “close”.

We define close in terms of a vector of summary statistics S such
that datasets Xi and X convey approximately the same information
about φ if and only if S(Xi ) ≈ S(X ).

Rejection-ABC Algorithm: Modify Algorithm 0 so that we retain
φi whenever ||S(Xi )−S(X )|| < δ, where

I || · || denotes Euclidean distance;

I for fixed computing effort, δ specifies a bias-variance trade-off;

I can fix δ post-hoc to obtain a desired acceptance rate, say 1%.

The retained values form a random sample from Π(φ|S(X )) which
approximates the target posterior Π(φ|X ).
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ABC: pros and cons

The Achilles’ Heel of ABC is that it is difficult to quantify the error
induced by only requiring ||Si−S || < δ rather than Xi = X

I but can compute integrated square error (ISE) for similar
simulated datasets.

Because of this, ABC should only be used as a last resort.

I But it is the only available option in many settings involving
complex models with many latent variables, and
high-dimensional datasets.

Several “adaptive” variants have been proposed instead of
rejection=ABC, the most important are

I Markov Chain Monte-Carlo ABC (Marjoram et al. 2003)

I Sequential Monte-Carlo ABC (Sisson et al. 2007; Beaumont
et al. 2009).
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Problem: how to choose summary statistics?

In practice they are selected by investigators on the basis of
intuition and established practice in the field.

I To date, ABC has largely been applied in population genetics,
where there are many well-established statistics that
investigators know and love.

I ABC is related to “indirect inference” that evolved in
econometrics (Gourieroux et al. 1993), and also to the
generalised method of moments. These are focussed on
classical estimators rather than Bayesian inference.

I ABC is now becoming used in infectious disease epidemiology
and in systems biology.

Ideally S should be sufficient for φ. In practice this is unachievable,
but (informally) we try to get as close to sufficiency as possible.



Approximate sufficiency

Joyce & Marjoram (2008) propose a notion of approximate
sufficiency (AS) and use it to develop an algorithm for selecting
good sets of summary statistics from a pool Ω.

I if S is sufficient then Π(φ|S) = Π(φ|S ∪ {T});

I so, given a current S ⊂ Ω they choose a random T ∈ Ω\S
and replace S with S ′ = S ∪ {T} if the ratio of the resulting
posterior density estimates departs significantly from 1;

I if T is accepted, test all leave-one-out subsets of S ′;

I start with S = ∅; continue until no further change is possible.

First principled approach to selecting summary statistics for ABC.

Drawbacks include: no global optimum (dependence on random
selection of new statistics to try); dependence on the threshold for
a “significant” difference in ratio of posterior densities.



Partial Least Squares (PLS)

I Wegmann et al. (2009) suggest using PLS to derive
orthogonal linear combinations of statistics from Ω that are
maximally correlated with φ.

I For computational reasons, apply PLS to a 1% random
subsample of the (φi ,Xi ) simulations.

I They propose leave-one-out cross validation to choose the
optimal number of components.

Drawbacks of this approach include

I lack of interpretability of the PLS components;

I all PLS components used are given equal weight;

I PLS is applied to entire data space, whereas our interest is
local to the observed X .



Minimum Entropy (ME)

We use a sample-based approximation to entropy as a heuristic for
selecting summary statistics. Why entropy?

I widely-used measure of information
I related to variance, handles multi-modal distributions better
I not a property of direct interest.

We use kth nearest neighbor entropy estimator (Singh et al. 2003)

log

[
πp/2

Γ(p/2+1)

]
− ψ(k) + log n +

p

n

n∑
i=1

log Ri ,k

where p denotes the dimension of φ and Ri ,k is the Euclidean
distance from φi to its kth nearest neighbour in the posterior
sample, while ψ(x) = Γ′(x)/Γ(x) is the digamma function.

I Definition applies to multivariate case.
I We take k = 4 as suggested by Singh et al. (2003).
I For |Ω| < 10 (say) can exhaustively consider all S ⊂ Ω;

I for larger Ω may need to limit e.g. to S : |S | < k.



Two-stage procedure

Stage 1: Find S ⊂ Ω that minimises the estimated entropy of
Π(φ|S), using rejection-ABC.

Stage 2: Using S identified in Stage 1, take the k simulated
datasets (below k = 100) that minimise ||Si − S ||.
For each S ⊂ Ω, perform rejection-ABC and compute
the RISE of Π(φ|S) for each of the k datasets, and
hence select the subset of Ω that minimises MRISE.

Motivating intuition: our (large) set of (φi ,Xi ) simulations
generates many Xi that are similar to the observed X , but for
which the generating φi is known. Thus we can find the S ⊂ Ω
that optimises the MRISE (or any preferred measure of accuracy of
Π for φ) over these Xi . We have a “bootstrap” problem that we
don’t yet have a definition of “similar to”, solved by using ME.
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Regression adjustment: mean

ABC algorithms can usually be improved by adjusting each
accepted φi to correct for the (small) discrepancy between Xi and
X (summarised by Si and S , respectively). Beaumont et al. (2002)
fitted a linear regression model and replaced φi with

φ′i = α̂ + ε̂i = φi + (Si−S)T β̂,

where (α̂, β̂) = (V T WV )−1V T Wφ is the least squares estimator
of the regression parameters and V is the design matrix of
distances (S−Si ). The weight matrix W is defined by

Wij =

{
K (‖Si − S‖), i = j
0 otherwise.

with K the Epanechnikov kernel

Kε(t) =

{
3(1−(t/ε)2)/4ε, t ≤ ε
0 t > ε.

The Wij are also applied to the φ′i in approximating Π(φ|S).
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Regression adjustment: variance

It may also be useful to adjust for systematic changes in the
variance of φ′i as Si deviates from S , using a locally log-linear
regression for the squared residuals from the mean adjustment:

log(ε̂i
2) = α + (Si−S)Tβ + εi ,

and estimate parameters with the same weight least-squares as
above. Then we obtain the adjusted parameter values

φ′′i = α̂ + ε̂i
σ̂(S)

σ̂(Si )
.

Feed-forward neural networks have also been proposed to make
both mean and variance adjustments in the ABC setting (Blum &
Francois, 2009)



Simulation study

I Data: 50 haplotypes (simplified coding of DNA sequences).

I Model: standard coalescent with infinite-sites mutation,
implemented in MS software (Hudson 2002).

I Targets of inference: scaled mutation and recombination
parameters, θ and ρ.

I Prior: (θ, ρ) ∼ Unif(2,10) × Unif(0,10).
I prior also used in simulations
I unrealistic assumption but OK for method comparison.

I 106 datasets were simulated from which 100 were chosen at
random to play the role of “observed” datasets.

I Rejection-ABC, with and without regression adjustments, was
applied to each “observed” dataset for each S , accepting 104

(= 1%) of the simulated samples.



Simulation study: the pool of summary statistics, Ω

Statistic Description

C1 the number of segregating sites
C2 a random draw from Unif[0,25]
C3 the mean number of differences over all pairs of haplotypes
C4 25 × (mean r2 of pairs separated by < 10% of the

simulated genomic region)
C5 the number of distinct haplotypes
C6 the frequency of the most common haplotype
C7 the number of singleton haplotypes

I Each statistic was first standardised to unit variance.

I We compared all 127 non-empty subsets of the pool, to
identify the subset that minimised Root Integrated Squared
Error of the 104 points accepted by the ABC.

I We did this for θ and ρ separately, and then for joint
estimation of (θ, ρ).



Performance of individual statistics

C1 C2 C3 C4 C5 C6 C7

θ no adjustment 1.75 3.27 2.26 3.15 2.33 2.89 2.45
mean 1.75 3.27 2.26 3.14 2.33 2.89 2.45

mean+var. 1.75 3.27 2.26 3.14 2.33 2.89 2.45

ρ no adjustment 3.93 3.95 3.93 3.92 3.83 3.84 3.88
mean 3.92 3.95 3.93 3.92 3.83 3.84 3.89

mean+var. 3.92 3.95 3.93 3.92 3.83 3.83 3.88

(θ, ρ) no adjustment 4.36 5.19 4.62 5.10 4.55 4.89 4.65
mean 4.36 5.19 4.62 5.10 4.56 4.89 4.65

mean+var. 4.36 5.19 4.62 5.10 4.55 4.89 4.65

I RMISE (averaged over 100 “observed” datasets) of ABC
inference using a single summary statistic.

I “noise” statistic C2 is worst in each row; bold indicates best.

I No single statistic performs well for ρ.

I Regression adjustments of little use here.



Performance of methods of selecting sets of statistics

best all two
single six PLS AS ME stage

θ no adjustment 1.75 1.87 1.83 1.86 1.80 1.70
mean 1.75 1.74 1.78 1.76 1.74 1.68

mean+var. 1.75 1.70 1.75 1.76 1.70 1.67
ρ no adjustment 3.83 3.59 3.91 3.68 3.54 3.44

mean 3.83 3.33 3.37 3.83 3.56 3.31
mean+var. 3.83 3.21 3.35 3.60 3.27 3.17

(θ, ρ) no adjustment 4.36 4.81 4.15 - 4.03 3.97
mean 4.36 4.83 4.08 - 4.06 3.81

mean+var. 4.36 4.75 4.03 - 3.71 3.66

I Two-stage algorithm is best in each row.

I ME is 2nd best in 4 of 6 rows.

I S = all six summary statistics (excluding C2) performs well for
univariate inference, not for bivariate.

I Both regression adjustments can help a lot.



Is the improvement of 2-stage algorithm significant?

AS vs. 2-stage PLS vs. 2-stage
∆MRISE (s.e.) p-value ∆MRISE (s.e.) p-value

θ no adjust. 0.151 (0.024) < 10−8 0.130 (0.020) < 10−8

mean 0.078 (0.029) 0.0042 0.099 (0.020) < 10−5

mean+var. 0.097 (0.024) < 10−4 0.086 (0.023) 0.0002

ρ no adjust. 0.239 (0.048) < 10−5 0.471 (0.070) < 10−9

mean 0.525 (0.090) < 10−7 0.059 (0.031) 0.0300
mean+var. 0.426 (0.081) < 10−6 0.181 (0.042) < 10−4

(θ, ρ) no adjust. 0.185 (0.053) 0.0004
mean 0.270 (0.065) < 10−4

mean+var. 0.369 (0.071) < 10−6

Difference in MRISE (∆MRISE) for the pair of methods indicated
in the column heading, together with its standard error and p-value
(one-sided t99 test).



Most frequently selected subsets (unadjusted inference)

true RISE # est. entropy # MRISE #

θ {C1,C3} 26 {C1,C3} 31 {C1,C4} 60
{C1,C4} 23 {C1,C4} 29 {C1,C3} 34
{C1,C5} 12 {C1,C3,C4} 17 {C1,C4,C5} 33

ρ {C1,C4,C5} 34 {C1,C4,C5} 33 {C1,C4,C5} 73
{C1,C5} 17 {C1,C5} 23 {C1,C3,C4,C5} 40

{C1,C3,C4,C5} 15 {C3,C4,C5} 16 {C1,C5} 23

(θ, ρ) {C1,C4,C5} 29 {C1,C5} 41 {C1,C4,C5} 76
{C1,C3,C5} 17 {C1,C4,C5} 40 {C1,C3,C4,C5} 44
{C1,C5} 16 {C1,C3,C5} 27 {C1,C5} 39

Top three S in frequency (out of 100 observed datasets) for which
ABC inference achieved within 1% of the optimal value of: true
RISE, estimated entropy, and MRISE (over 100 nearest datasets).

I Different S are optimal for different datasets.
I Justifies search for optimal statistics locally to observed X .
I Suggests averaging posterior approximations over several S .



Further work

I Restricting attention to subsets of Ω, each statistic having
equal weight, is computationally convenient but restrictive.

I Exhaustive search over all S ⊆ Ω is expensive (10 hours per
dataset versus 6 min, 3 min and 2 min for ME, AS and PLS).

I Could restrict attention to S that are a priori plausible, and/or
that perform well under ME.

I Could implement an iterative scheme such as AS method but
with superior MRISE criterion for accepting updates.

I Could generalise to continuous updates of a weight vector.

I Can consider orthogonalising statistics.

I All the above is applied only to rejection-ABC; could also be
applied to MCMC-ABC or SMC-ABC, with learning of the
weight vector in addition to existing updates.

I apologise that there is no paper in the proceedings volume;
software is available on request and a manuscript will shortly
appear in Statistics Applied in Genetics and Molecular Biology.



And finally some light entertainment ...

AR TEMPLETON, Statistical hypothesis testing in
intraspecific phylogeography: nested clade
phylogeographical analysis vs. approximate Bayesian
computation, Molecular Ecology 18, 319–331 (2009).

I “NCPA can yield strong inference whereas ABC yields weak
inference and there is no way within ABC of identifying or
correcting for this source of false-positives”

I “... disadvantage of ABC is that the interpretative set cannot
be validated”

I “The field of statistics focuses upon the error induced by
sampling from a population of inference”

I “In ABC, Si is the long-term statistic, and ... evolutionary
stochasticity and ... sampling error is taken into account via
the computer simulation. However, S is the current
generation statistic, and it is treated as a fixed constant ...
thereby violating the known sources of error”



“As Fig. 3 illustrates, the ABC method cannot distinguish between
a truly good fitting model, an uninformative model, or an
over-determined model. This is the danger of using only local
relative probabilities rather than true posterior distributions.”



I “The impact of treating S as a fixed constant is to increase
statistical power as an artefact.”

I “Ignoring the sampling error of S undermines the statistical
validity of all inferences made by the ABC method.”

I “Hence, the ‘posterior probabilities’ that emerge from ABC
are not co-measureable. This means that it is mathematically
impossible for them to be probabilities.”

I “Thus, the final product of the ABC analysis are numbers
that are devoid of statistical meaning. The ABC method is
not capable of even weak statistical inference.”



Many concerned citizens got together to try to put right as much
as we could of Templeton’s nonsense:

Beaumont MA, Nielsen R, Robert C, Hey J, Gaggiotti O,
Knowles L, Estoup A, Panchal M, Corander J, Hickerson
M, Sisson SA, Fagundes N, Chikhi L, Beerli P, Vitalis R,
Cornuet JM, Huelsenbeck J, Foll M, Yang ZH, Rousset
F, Balding D, Excoffier L (2010). In defence of
model-based inference in phylogeography MOL ECOL
19(3), 436-446 doi:10.1111/j.1365-294X.2009.04515.x.

only to discover to our dismay that he published the same rubbish
again in the March 2010 issue of PNAS, without acknowledging
our rebuttal (appeared Jan 2010).

It is difficult to defend science against pseudo-science when
we must admit that an influential person can publish garbage in a
top journal, and be recognised as a leading scientist with so little
understanding of basic ideas of inference.


