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Polynomial Matrices

Polynomial matrices can be considered to be arrays
formed by polynomials in a complex variable z
Most operations that are valid with normal matrices are
also valid with polynomial matrices.
But: Some are not, for example, the inverse of a
polynomial matrix exists if the matrix is not singular, but
may be that it is not a polynomial matrix
For example the polynomial matrix

a(z) =

(
1− z z

z 1− 0.5z

)
has determinant

1− 1.5z − 0.5z2, and its inverse is the rational matrix

a−1(z) = (1− 1.5z − 0.5z2)−1 ·
(

1− 0.5z −z
−z 1− z

)
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Unimodular matrices

A square polynomial matrix is called unimodular if its
determinant is a non-zero scalar.
The inverse of a unimodular matrix is a polynomial matrix.
For example, the polynomial matrix

b(z) =

(
1− z2 −2z

2z 4

)
has determinant 4 and is thus

unimodular, its inverse is the polynomial matrix

b−1(z) =

(
1 0.5z

−0.5z 0.25− 0.25z2

)
.

The degree of a n x m polynomial matrix is defined as the
maximum of the degrees of the nm polynomials that it has
as elements.
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Triangularization

A basic result about n x m polynomial matrices is that they
can be reduced by means of pre(post)-multiplication by a
unimodular polynomial matrix to row(column) Hermite form
(a triangular form).
For example, R(z) = U(z) · a(z), where

U(z) =

(
1 + z z
−z 1− z

)
is a unimodular matrix with

determinant 1 and R(z) =

(
1 2z + 0.5z2

0 1 − 1.5z − 0.5z2

)
is an

upper triangular matrix, so det(a(z)) =
(det(U0))−1 · det(R(z)) = (1)−1 · (1− 1.5z − 0.5z2).
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Right and Left Matrix Fraction Descriptions (1)

A s ×m rational transfer function T (z) is a s ×m array that
has as elements polynomial quotients.
A right coprime fraction (r.c.f) or right coprime matrix
fraction description, of T (z) is a pair of polynomial
matrices, (Nr (z),Dr (z)), of orders s ×m and m ×m
respectively such that:
(i) Dr (z) is non-singular (its determinant is not the zero
polynomial).
(ii) T (z) = Nr (z)Dr (z)−1.
(iii) (Nr (z),Dr (z)) is right-coprime, that is, all its greatest
common right divisors are unimodular matrices.
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Right and Left Matrix Fraction Descriptions (2)

An important result states that given a n ×m rational
transfer function T (z), it can always be expressed as a
r.c.f. or l.c.f. T (z) = Dl(z)−1Nl(z) = Nr (z)Dr (z)−1.
And it can be done in a numerically reliable and efficient
way
An example of a 2× 1 transfer function expressed as a r.c.f
and a l.c.f. is:

T (z) =

(
z(z − 1)(z + 2)

z + 1

)
((z + 1)(z − 1))−1 =(

z(z+2)
z+1)

1
z−1

)
=

(
z + 1 z − 1

0 (z − 1)2

)−1(
(z + 1)2

z − 1

)
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Matrix Polynomial Equations

Several kinds of polynomial equations arise in system
theory and signal processing.
Some of them are described in Kučera (1979)
The so-called symmetric matrix polynomial equation has
the form

A′(z−1)X (z) + X ′(z−1)A(z) = B(z) (1)

where A(z) and B(z) are given polynomial matrices with
real coefficients and B(z) is para-Hermitian, that is
B(z) = Bl(z−1) + Br (z), with Bl(z) = B′r (z).
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The Symmetric Matrix Polynomial Equation

The solution of the symmetric matrix polynomial equation
can be found in an efficient and numerically reliable way,
as explained in Henrion and Šebek (1998).
This equation can be used to compute the
autocovariances of a VARMA process, see Söderström,
Ježek and Kučera (1998).
Given a stationary VARMA process of the form
a(B)yt = b(B)εt , its autocovariance generating function is
G(z) = a−1(z)b(z)Σb′(z−1)a′−1(z−1),
We are looking for a decomposition of the form
G(z) = M(z) + M ′(z−1).
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Autocovariances of a VARMA process

Pre-multiplying by a(z), post-multiplying by a′(z−1) and
calling X ′(z) = a(z)M(z) we get, after transposition,
b(z−1)Σb′(z) = a(z−1)X (z) + X ′(z−1)a′(z),
This is equation (1) with B(z) = b(z−1)Σb′(z) and
A(z) = a′(z).
To find the autocovariances of the process we first solve
this symmetric matrix polynomial equation for X , with the
condition that X0 be symmetric.
Then, since M(z) = (1/2)Γ0 + zΓ1 + z2Γ2 + · · · , (Γi is the
lag-i autocovariance of yt ), we solve recursively (long
division) the equation a(z)M(z) = X ′(z) to get the first
autocovariances
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Spectral Factorization

Finally, the Yule-Walker equations can be used to obtain
the next autocovariances.
This method is more efficient than the methods that are
usually employed in time series analysis.
Another application of the symmetric matrix polynomial
equation is spectral factorization.
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Polynomial Filters

Given a stationary VARMA process of the form
a(B)yt = b(B)εt , sometimes it is necessary to compute the
model that follow some linear combination(s) of its
components.
More in general, the linear combination(s) may include
delayed components.
This problem is usually addressed in time series using
ad-hoc hand computations for each case, but these
computations grow quickly in complexity.
Suppose that we want to compute the VARMA model that
follows the process zt = F (B)yt , where F (z) is an s x n
polynomial matrix.
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Right to Left Matrix Fractions Descriptions

After solving in the VARMA model for yt we pre-multiply by
F (B) and obtain zt = F (B)a−1(B)b(B)εt ,
But F (B)a−1(B) = ã−1(B)F̃ (B), that is, we transform a
right matrix fraction description into a left one.
Finally we do the spectral factorization
F̃ (B)b(B)εt = c(B)ut , where ut is a new white noise with
covariance matrix Σu

The final model is ã(B)zt = c(B)ut

The method can be extended to the case of a rational filter
of the form G(B)zt = F (B)yt
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An Example (1)

Let the joint model of xt and yt be(
1− B4 0

−(1− B)2 (1− B)2

)(
xt
yt

)
=

(
1 + .44B + .5B2 + .32B3 −.25B − .25B2 − .34B3

.18B + .05B2 1− .78B + .14B2

)(
ε1t
ε2t

)
We want to compute the marginal model of yt

That is, we compute the model of the filter yt = F (B)

(
xt
yt

)
with F (z) = (0 1)
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An Example (2)

We obtain

ã(z) = 1− 0.5z2, F̃ (z) = (0.5z, 1),

c(z) = 1 + 0.032502z, σ2
u = 1.5384

So, the marginal model of yt is

(1− 0.5B2)yt = (1 + 0.032502B)ut , σ2
u = 1.5384

The result is automatically obtained by the computer
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Introduction

An exact method for the computation of a univariate
Wiener-Kolmogorov filter based on a finite sample can be
found in Burman(1980).
The exact multivariate case based on a finite sample has
been addressed in the literature before using state-space
methods and, for some particular cases, like the signal
plus noise model or the deconvolution problem, using
polynomial methods (e.g. Ahlén and Sternad (1991)).
We will provide a brief description of a new polynomial
method that solves the general multivariate case,



Introduction
Matrix Polynomial Equations and Autocovariances

VARMA Process Filtering and Matrix Fraction Descriptions
Exact Multivariate Wiener-Kolmogorov Filtering

Summary

Filter Equations (1)

Assume that two multivariate processes, st and yt , follow
jointly a stationary, invertible and left coprime VARMA
model with VAR part a(B) and MA part b(B) that we
consider partitioned as in(

a11(B) a12(B)
a21(B) a22(B)

)(
st
yt

)
=

(
b11(B) b12(B)
b21(B) b22(B)

)(
ε1t
ε2t

)
(2)

Assume also that a finite sample of yt is available, but no
observations from st are available. We are interested in
estimating the values of st .
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Filter Equations (2)

First, we transform the model into another one that has a
diagonal AR part, this is accomplished by pre-multiplying
(2) by Adj(a(B)), the adjoint of a(B), the result is

det(a(B))Inyt =

(
d11(B) d12(B)
d21(B) d22(B)

)(
ε̂1t
ε̂2t

)
(3)

where d(z) = Adj(a(z))b(z)L′, with L′L = Σε (Cholesky
decomposition), ε̂t = (L−1)′εt is a standardized white noise
process and In is the identity matrix of dimension n.
Now we will use the Wiener-Kolmogorov formula that
assumes that we have a doubly infinite realization of yt ,
see Caines(1988) p. 139.
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Filter Equations (3)

The key points are (i) the diagonal AR part cancels out and
(2) since we actually have a finite sample, we use the exact
finite sample forecasts and backcasts of yt as needed (we
only need a few of them).
Because of the properties of conditional expectations this
procedure will provide the exact Wiener-Kolmogorov filter
based on the finite sample.
The joint covariance generating function of st and yt is
G(z) = (det(a(z))−1d(z)d ′(z−1)(det(a(z−1))−1

and the optimal filter is ŝt = G12(B) ·G−1
22 (B)ŷt =

[d11(B)d12(B)]

[
d ′21(F )
d ′22(F )

]
Θ′−1(F )Θ−1(B)ŷt ,
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Filter Equations (4)

So, we can compute the exact finite Wiener Kolmogorov
filter running three cascaded filters.
First filter: x̂t = Θ−1(B)ŷt , with time running forwards
Second filter: v̂t = Θ̃′−1(F )ẽ(F )x̂t , with time running
backwards, where e′(z) = [d21(z)d22(z)] and
e(z−1)Θ′−1(z−1) = Θ̃′−1(z−1)ẽ(z−1) (we transform a right
fraction into a l.c.f)
Third filter: ŝt = [d11(B)d12(B)]v̂t with time running
forwards.
Making some more polynomial computations the number
of filters can be further reduced to two, one running
backwards and the other forwards in time
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Initial Conditions (1)

No matter what filters we use, we must compute the initial
and final conditions of the processes involved.
For example, using the above filter we need the initial and
final conditions of the yt , st , xt , and vt processes.
The final conditions of yt are simply the exact forecasts of
yt , and can be obtained from its marginal model.
The initial conditions of yt are the exact forecasts of the
marginal time-reversed process of yt , that can be obtained
as an echelon realization of a process that has as
autocovariances the transposed autocovariances of yt

But, to obtain the joint MSE’s of forecasts and backcasts it
is better to use an extended innovations algorithm.
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Initial Conditions (2)

The initial and final conditions of the other processes can
be computed in three different forms.
The first form is to use the extended innovations algorithm.
For st this can be done since the joint model of yt with st is
known, and from this model the cross-covariances can be
computed.
But for vt (or other processes) the joint model of yt and vt
can also be computed from the filter equations. It will be a
singular joint model, but its cross-covariances can still be
computed.
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Initial Conditions (3)

The second form consists of summing something that we
could call a left-right matrix geometric series. This form
can even be extended to non-stationary processes.
The third form may be seen as a generalization of the
univariate procedure in Burman (1980). It solves a system
of linear equations formed by the filter equations and the
backwards in time model of the process that the filter
transforms.
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Running the Filters

Once we know how to compute the initial and final
conditions, running the filters is easy.
Moreover, the time of computation grows only linearly with
T .
We have seen that fixed interval smoothing can be
efficiently done.
Fixed point smoothing can also be efficiently done, using
the extended innovations algorithm.
Fixed lag smoothing can also be done, but not so
efficiently, because of the non-recursive nature of
Wiener-Kolmogorov filters.
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Some applications and an Example (1)

Exact filtering is of central importance in engineering,
statistics, physics,...
In time series analysis, the methodology that we have
proposed can be used to compute the classical univariate
filters, e.g. the Hodrick-Prescott filter
But new univariate or multivariate filters can also be
computed
For example, consider two quarterly economic indicators
y1t and y2t , that follow the structural models
yjt = Tjt + St + ejT .
This is a structural decomposition as trend, seasonal and
irregular components with the peculiarity that both
seasonal components are assumed to be equal.
There are many possible specifications of the components,
for illustration we choose the following:
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Some Applications and an Example (2)


1 + B + B2 + B3 0 0 0 0

0 1− B 0 0 0
0 0 (1− B)2 0 0
0 0 0 1 0
0 0 0 0 1




St
T1t
T2t
e1t
e2t

 = (4)


1 0 0 0 0
0 1 + B 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




a1t
a2t
a3t
a4t
a5t

 (5)
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Some applications and an Example (3)

We are interested in extracting the two trends and the
common seasonal component from the two observed
indicators.
To do so, first we have to compute the joint model of the
five processes St , T1t , T2t , y1t and y2t .
Then we have to compute the filter equations.
Next, the initial conditions have to be calculated.
Finally, the forward and backward filters have to be run.
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Some applications and an Example (4)

The joint model is the model of the following filter:
St
T1t
T2t
y1t
y2t

 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
1 1 0 1 0
1 0 1 0 1




St
T1t
T2t
e1t
e2t

 (6)

And the marginal model of y1t and y2t is obtained doing:

(
y1t
y2t

)
=

(
1 1 0 1 0
1 0 1 0 1

)
St
T1t
T2t
e1t
e2t

 (7)
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Some applications and an Example (5)


1 + B + B2 + B3 0 0 0 0

0 1− B 0 0 0
0 0 (1− B)2 0 0
−1 −1 0 1 0
−1 0 −1 0 1




St
T1t
T2t
y1t
y2t

 = (8)


1 0 0 0 0
0 1 + B 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




u1t
u2t
u3t
u4t
u5t

 (9)
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Some applications and an Example (6)

And the marginal model is (with two decimal places):(
1− B4 0

−(1− B)2 (1− B)2

)(
y1t
y2t

)
=

(
1 + .44B + .5B2 + .32B3 −.25B − .25B2 − .34B3

.18B + .05B2 1− .78B + .14B2

)(
w1t
w2t

)
And the three cascaded filters are (with one decimal place):
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Some applications and an Example (7)

First filter, with time running forwards(
3− 4.3B + 1.5B2 − .6B3 − .9B4 + 1.4B5 · · ·
1.8− 2.9B + 1.5B2 − .6B3 + .2B4 − .1B5 · · ·

)(
x1t
x2t

)
=

(
y1t
y2t

)
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Some applications and an Example (8)

Second filter, with time running backwards
1− .1F + .2F 2 + .2F 3 · · · · · · · · · · · ·

−12.8F + 5.1F 2 − 3.7F 3 · · · · · · · · · · · ·
11.8F − 5.9F 2 + 2.9F 3 · · · · · · · · · · · ·

−5.9F 2 · · · · · · · · · · · ·
0 · · · · · · · · · · · ·




v1s
v2s
v3s
v4s
v5s

 =


.3− .6F + .1F 2 + .1F 3 .1− .3F + .1F 2 + .1F 3

.3− 5.2F + 9.3F 2 − 4.5F 3 −.2− 2.2F + 5.1F 2 − 2.7F 3

4.6F − 9.2F 2 + 4.6F 3 .4 + 1.9F − 5F 2 + 2.8F 3

0 0
0 0


(

x1s
x2s

)
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Some applications and an Example (9)

Third filter, with time running forwardsSt
T1t
T2t

 =

1− 3B + 3B2 − B3 0 0 0 0
0 1− B2 − B4 + B6 0 0 0
0 0 1− B4 0 0




v1t
v2t
v3t
v4t
v5t


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Summary

The results suggest that the polynomial methods can solve
efficiently many problems in time series analysis that could
only be solved before using another kind of techniques.
The advantage is that in many cases they are more direct,
faster and provide more intuition to the researcher.


	Introduction
	Matrix Polynomial Equations and Autocovariances
	VARMA Process Filtering and Matrix Fraction Descriptions
	Exact Multivariate Wiener-Kolmogorov Filtering
	Summary

