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Application to DNA Copy number
DNA Copy number analysis

In normal cells: copy number = 2 (pairs of chromosome)
In tumor cells: copy number 6= 2 on many points of the genome
Gain and loss of DNA:

I chromosomes
I smaller regions up to 10Kb
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Multiple change-point detection
The data

The signal we observe Yt is noisy
The true signal is affected by abrupt changes

Segments and segmentations
MK the set of all possible segmentations with K segments

m ∈MK a specific segmentation
r ∈ m a segment of m with nr observations
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A model, a simple example

Normal heteroscedastic segmentation

∀t ∈ r Yt ∼ N (µr , σ
2
r ) {Yt}t are independent

Parameter estimation
Given the breakpoint positions, the estimation of other parameters
is straightforward
For example, using maximum likelihood we get:

µ̂r = 1
nr

∑
t ∈ r Yt
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Estimation of breakpoint positions?

Problems
For n points, there are 2n−1 possible segmentations
Breakpoints are discrete parameters

How to select one segmentation out of so many?
How to explore the segmentation space?

Some solutions
Dynamic Programming (DP) to recover the optimal solution: O(n2)

Various model selection criteria:
I The BIC criteria is not theoretically justified
I [Zhang and Siegmund(2007)] proposed a modified BIC criteria
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One example

Application to a DNA copy number profile

1 Algorithm
I DP to recover the best

segmentation in K = 1 up to
K = 30 segments

2 Select K
I with the modified BIC

Questions
Is the optimal segmentation far better than others?
Quality of the segment/breakpoint localizations?
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Bayesian framework

Some probabilities
P(m) prior distribution of segmentation m
P(K ) prior distribution of the number of segments

P(Y |θm,m) distribution of the data given m and θm

Assumption: Factorisability
If the segment are independent: P(Y |m) = Πr∈mP(Y r |r)

P(Y r |r) =
∫

P(Y r |θr )P(θr )dθr , with θr parameters or segment r
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Computation

Quantities of interest
P(m|Y ) posterior probability of a segmentation m
P(K |Y ) posterior probability of the number of segments

SK (r) posterior probability of the segment r
ICL(K ) Integrated Completed Likelihood [Biernacki et al.(2000)]

ICL(K ) = − log P(Y ,K ) +H(K )

ICL favours the K where the best segmentation is by
far the best one

H(K ) entropy: H(K ) = −
∑

m∈MK
P(m|Y ,K ) log P(m|Y ,K )

Small entropy means that the best segmentation in K
is by far the best fit to the data
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P(m|Y ) and P(K |Y )

P(m|Y )

P(m|Y ) = P(Y |m).P(m) = Πr∈mP(Y r |r).P(m)

P(Y r |r) =
∫

P(Y r |θr )P(θr )dθr , with θr parameters or segment r
BIC criteria is derived from an approximation of this P(m|Y )

In fact, it can be computed exactly

P(K |Y )

P(Y ,K ) =
∑

m∈MK

P(Y ,m)

P(K |Y ) can be computed as successive matrix-vector products
Similar computations were proposed by using backward-forward
like algorithms [Fearnhead(2005), Guédon(2008)]
P(K |Y ) can be used to select the number of segments
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Posterior probability of a segment

Posterior probability of a segment
SK ,k (Jt1, t2J) segmentations having r = Jt1, t2J as their k -th segment.

Compute exactly their probability SK ,k (Jt1, t2J) in O(n2):

k − 1 seg. before t1 × 1 between t1 & t2 × K − k after t2

Mk−1(J1, t1J) × {Jt1, t2J} × MK−k (Jt2,n + 1J)

SK (Jt1, t2J) segmentations including segment Jt1, t2J

SK (Jt1, t2J) =
⋃
k

SK ,k (Jt1, t2J)

SK (Jt1, t2J) =
∑

k

SK ,k (Jt1, t2J)
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Entropy

Entropy

Exact computation in O(K .n2), uses the posterior probability of
segments

H(K ) = −
∑

m∈MK
P(m|Y ,K ) log P(m|Y ,K )

= −
∑

m∈MK
P(m|Y ,K ) log(Πr∈mP(Y r |r).P(m))

= −
∑

r SK (r) log P(Y r |r) + log P(K |Y )

ICL

ICL(K ) = − log P(Y ,K ) +H(K )
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Simulation
Design and results

Simulated sequence of 150 observations
6 change-points (positions: 21, 29, 68, 82, 115, 135).
Do P(m|Y ), P(K |Y ) and ICL(K ) recover the correct number of
breakpoints (in relation with the level of noise)?
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A CGH example

CGH Profiles
P(m|Y ): 3 segments ICL(K ): 4 segments
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A CGH example

ICL favors segmentations with small entropy

P(m|Y ): 3 segments ICL(K ): 4 segments

Segments probability if K = 3 Segments probability if K = 4
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Conclusion

Exact computation in O(Kn2)
I Posterior Probability of a segment
I Entropy of the segmentation space

Model selection
I Exact computation of P(m|Y )
I Exact computation of P(K |Y )
I Exact computation of ICL(K ) (using the entropy)
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