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Motivation
Apart from the fact that the ML estimates θ̂ML are often
influenced by outliers, the solution f (x ; θ̂ML) of the
parametric estimation problem has some other drawbacks:

Instead of f (x ; θ̂ML), a few numbers characterizing the data
would be useful in further analysis. However, moments
mk = E(X −m1)k ,m1 = EX are often queer expressions
containing special functions, and moments of heavy-tailed
distributions do not exist, so that the approach
m̂k = mk (θ̂ML) is not used
Complex problems are solved by using ’pure’ data not
’adapted’ to the assumed model by an adequate inference
function (Pearson correlation coefficient)
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Problem
The reason: The score function r(x ; θ) = (rθ1 , ..., rθm ),
rθj (x ; θ) = ∂

∂θj
log f (x ; θ), is a vector function, suitable for

estimation of parameters, but too complicated to afford
useful proposals of sensible numeric characteristics of
distributions and too complicated to be used in more
complex problems

The problem: To find a relevant scalar inference function
S(x ; θ) reflecting basic features of the model distribution,
and to use moments

Mk (θ) =

∫
X

Sk (x ; θ)f (x ; θ) dx

for generalized moment estimates
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Location distributions
Location distribution g(y − µ), µ ∈ R, g unimodal, regular,
with support R
Scalar score

rµ(y ;µ) =
∂

∂µ
log g(y − µ) = SG(y − µ)

where function

SG(y) = −g′(y)

g(y)

is obtained by differentiating according the variable

Scalar score of a distribution with support R

SG(y ; θ) = − 1
g(y ; θ)

d
dy

g(y ; θ)
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Log-location distributions - I

The log-location distribution (Lawless 2003) F of random
variable X = η−1(Y ) with support X = (0,∞) has density

f (x ; τ) = g(u)η′(x),

where g(y − µ) is the density of ’prototype’ distribution on R,

u = η(x)− η(τ)

and the ’log-location’ parameter τ = η−1(µ) is the ’image’ of the
location µ of the prototype
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Log-location distributions II

Theorem.
∂

∂τ
log f (x ; τ) = SG(u)η′(τ)

T (x ; τ) ≡ SG(u) = − 1
f (x ; τ)

d
dx

(
1

η′(x)
f (x ; τ)

)
transformation-based score (t-score)
Scalar score

Sτ (x) = η′(τ)T (x ; τ)
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Generalizations
F on general interval support X ⊆ R, η : X → R

t-score (a general concept)

T (x , θ) = − 1
f (x ; θ)

d
dx

(
1

η′(x)
f (x ; θ)

)
where (Johnson, 1949)

η(x) =

{
log(x − a) if X = (a,∞)

log (x − a)

(b − x)
if X = (a,b)

However, to use relation ∂
∂τ log f (x ; θ) = η′(τ)T (x ; θ),

θ has to be in the form θ = (η−1(µ), θ2, ..., θm)
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Starting point

Sτ (x ; τ) = η′(τ)T (x ; τ)

Example: f (x ; τ) = 1
τ e−x/τ

T (x ; τ) = x/τ − 1 Sτ (x ; τ) =
1
τ

(x/τ − 1)

τ is usually taken as scale parameter, but τ = η−1(µ) and
T (τ ; θ) = 0. Perhaps the most important value is not the
parameter, but the ’center’ of the distribution itself
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Definitions

Measure of central tendency: t-mean

x∗(θ) : T (x ; θ) = 0

Inference function: Scalar score

S(x ; θ) ≡ η′(x∗)T (x ; θ)

EθS2 Fisher information for x∗
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Example: Scalar scores of beta-prime distribution
f (x) = 1

B(p,q)
xp−1

(x+1)p+q T (x) = qx−p
x+1 x∗ = p

q S(x) = q
p

qx−p
x+1
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Consequences
Measure of variability: Score variance: the reciprocal
Fisher information

ω2(θ) =
1

EθS2

’Center’ and ’radius’ of the distribution

x∗(θ), ω(θ)

Estimates: Important are not the estimates of θ, but the
sample t-mean x̂∗ = x∗(θ̂ML) and sample score standard
deviation ω̂ = ω(θ̂ML), which make possible to compare
results for various models with different parameters
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Score moment estimators

θ̂SM by a generalized moment method

1
n

n∑
i=1

Sk (xi ; θ) = EθSk , k = 1, ...,m

Scalar score moment estimates are M-estimates,
equations are ’simple’ (EθSk is often expressed by simple
function of parameters)
Scalar scores of heavy-tailed distributions are bounded:
estimates are robust
In cases of heavy-tailed distributions, estimates have
asymptotic efficiences ∼ 0.9.
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Inverted gamma distribution
Support (0,∞), densities and t-scores

f (x) =
γα

xΓ(α)
x−αe−γ/x T (x) = α− γ/x

x∗ = γ
α ,ET 2 = α, ω2 = (x∗)2

ET 2 = γ2

α3 , S(x) = α2

γ (1− x∗/x)
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Estimation

n∑
i=1

(1− x∗/xi) = 0

1
n

n∑
i=1

(1− x∗/xi)
2 = α

x̂∗ is the harmonic mean
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Generalized beta family

Support X = (0,∞) and densities

f (x ; τ, α, ν) =
1

ναB(να, α)

(x/τ)να−1

[(x/τ) + 1/ν](1+ν)α

where B is the beta function. The t-score is

T (x ; τ ;α, ν) = α
(x/τ)− 1

(x/τ) + 1/ν

The first three t-score moments ET = 0, ET 2 = ν
(ν+1)α+1

ET 3 = 2ν(1−ν)
[(ν+1)α+1][(ν+1)α+2] are independent of τ
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Generalized beta family, τ = 1
By setting τ = 1 we obtain equations

ν̂ :
n∑

i=1

xi − 1
xi + 1/ν

= 0

and α̂ = (ν̂/ρ− 1)/(ν̂ + 1), where ρ = 1
n
∑n

i=1

(
xi−1

xi+1/ν̂

)2
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Estimation of the Threshold Parameter
Uniform distribution on [0, γ]. ML estimator is γ̂ML = x(n). The
t-score is

T (x) =
2x
γ
− 1,

so that
1
n

n∑
i=1

2xi

γ
= 1

The score moment solution

γ̂SM = max(x(n),2x̄)

For n = 5, 10, 20 and 50 we obtained after 10 000 experiments
γ̂ML ≈ 0.87, 0.91, 0.95 and 0.98, respectively, whereas γ̂SM = 1
with accuracy to three decimal points
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Confidence intervals

for x̂∗SM can be established by the modification of the Rao score
test or by the use of the distance

d(x̂∗SM , x0) =
|S(x̂∗SM)− S(x0)|

ES2

As

ω2 =
1

ES2 =
(x∗)2

ET 2

ω̂ =
x̂∗SM[1

n
∑n

i=1 T 2(xi ; x̂∗SM)
]1/2
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