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Extremality Measure

Oriented Sub-Orthants C~u
v

Given a unit director vector ~u ∈ Rn and a vertex v ∈ Rn; a
Oriented Sub-Orthant C~u

v is the convex cone given by

C~u
v = {x ∈ Rn | R~u(x − v) ≥ 0} . (1)

The inequality in (1) is componentwise.
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√
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In R2, the director vector ~u can be determined by an angle
0 ≤ θ ≤ 2π as ~u = [cos θ, sin θ]′ that indicates the direction of the
cone.
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Oriented Sub-Orthants C~u
v

Considering the case in R2 with ~u = [u1, u2]
′ and the vertex

v =

(

v1

v2

)

,

C~u
v =

{

(

x1

x2

)

∈ R2 :

√
2

2

(

u1 + u2 u2 − u1

u1 − u2 u1 + u2

) (

x1 − v1

x2 − v2

)

≥
(

0
0

)

}

.

In R2, the director vector ~u can be determined by an angle
0 ≤ θ ≤ 2π as ~u = [cos θ, sin θ]′ that indicates the direction of the
cone.
{(

x1

x2

)

∈ R2 :

(

cos(θ − π
4 ) sin(θ − π

4 )
− sin(θ − π

4 ) cos(θ − π
4 )

) (

x1 − v1

x2 − v2

)

≥
(

0
0

)}

.
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Definition (Extremality Measure)
The Extremality of x ∈ Rn respect to a distribution function F in
direction ~u is a mapping E~u(x, F ) : Rn ×F −→ R+ ∪ {0}, defined by

E~u(x, F ) = 1 − Px,~u,

where Px,~u is given by PF

(

C~u
x

)

.
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Definition (Extremality Measure)
The Extremality of x ∈ Rn respect to a distribution function F in
direction ~u is a mapping E~u(x, F ) : Rn ×F −→ R+ ∪ {0}, defined by

E~u(x, F ) = 1 − Px,~u,

where Px,~u is given by PF

(

C~u
x

)

.

A natural estimator for E~u(x, F ) is given by

E~u(x, F̂ ) = 1 − 1

m

m
∑

j=1

1{xj , ∈ C~u
x} = 1 − 1

m

m
∑

j=1

1{R~u(xj−x)≥0},

where x1, . . . , xm is a sample of the random vector X , that is, 1−
the proportion of the point cloud that belong to C~u

x .
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◮ High extremality of a point x means that
the convex cone C~u

x contains a small part
of the total mass and possibly x belongs
to some tail of the distribution.
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Extremality Measure

◮ High extremality of a point x means that
the convex cone C~u

x contains a small part
of the total mass and possibly x belongs
to some tail of the distribution.

◮ Hence, high extremality can be
interpreted as ”farness” regarding
distribution
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Figure: E 1
√

2
[1, 1](x, F ) = α and E[0, 1](x,F ) = α
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Figure: E 1
√

3
[1, 1, 1](x,F ) = α
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E~u(x0, F ) is continuous in ~u.
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Extremality Measure

Properties

Property
For any x0 ∈ Rn and any absolutely continuous F ∈ F

E~u(x0, F ) is continuous in ~u.

Property

E~u(x, F ) ≤ E~u(x∗, F ) for all x∗ ∈ C~u
x
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function F . Let A a n−orthogonal matrix and let b be a vector in
Rn. Then

EA~u(Ax + b, FAX+B) = E~u(x, FX)
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Extremality Measure

Properties

Property
Let X be a n− multivariate random variable with distribution
function F . Let A a n−orthogonal matrix and let b be a vector in
Rn. Then

EA~u(Ax + b, FAX+B) = E~u(x, FX)

Property
For x ∈ Rn − {0} and ~u = x

‖x‖ , where ‖ · ‖ is the Euclidean norm.

‖x‖ −→ ∞ =⇒ E~u(x, F ) −→ 1.
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Value at Risk
Suppose that F is the loss distribution and α ∈ [0, 1] then

V aRα(X) := inf{x ∈ R | F (x) ≥ α}.
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Value at Risk
Suppose that F is the loss distribution and α ∈ [0, 1] then

V aRα(X) := inf{x ∈ R | F (x) ≥ α}.

b

V aRα(X)

α
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is to consider a function f : Rn −→ R and one-dimensional risk
measure on f(X).
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Value at Risk

A natural idea to study risk for portfolio vectors

X = (X1, . . . , Xn)

is to consider a function f : Rn −→ R and one-dimensional risk
measure on f(X).

◮ The V aR of the joint portfolio is that associated to f(X).
◮ In Burgert and Rüschendorf (2006),

f(X) =

n
∑

i=1

Xi or f(X) = max
i≤n

Xi.
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Multivariate Value at Risk

The multivariate analogue of the Value at Risk is discussed i n
Embrechts and Pucceti (2006)

◮ Multivariate lower-orthant Value at Risk

V aRα(F ) := ∂{x ∈ Rn : F (x) ≥ α}

◮ Multivariate upper-orthant Value at Risk

V aRα(F̄ ) := ∂{x ∈ Rn : F̄ (x) ≤ 1 − α}
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Let F be a multivariate distribution function.

A~u
α(F ) = {x ∈ Rn : E~u(x, F ) ≥ 1 − α} .
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Let F be a multivariate distribution function.

A~u
α(F ) = {x ∈ Rn : E~u(x, F ) ≥ 1 − α} .

We define the Oriented Multivariate Value at Risk

V aR~u
α(X) = ∂A~u

α(F ).
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Let F be a multivariate distribution function.

A~u
α(F ) = {x ∈ Rn : E~u(x, F ) ≥ 1 − α} .

We define the Oriented Multivariate Value at Risk

V aR~u
α(X) = ∂A~u

α(F ).

Particulary for ~u = 1√
n
[1, . . . , 1] and ~u = − 1√

n
[1, . . . , 1]

V aR~u
α(X)

is the upper-orthant value at risk and the lower-orthant value at
risk respectively.
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However, directions as ~u = 1√

n]
[±1, . . . ,±1]′ and principal

components can be interesting in financial applications.
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Estimation Method Proposed

Given {x1 . . . , xm}

S~u
α(Fm) =

{

xi : E~u

(

xi, F̂m

)

= 1 − α
}

.

However, it may be possible that S~u
α(Fm) = ∅.
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Estimation Method Proposed

Given {x1 . . . , xm}

S~u
α(Fm) =

{

xi : E~u

(

xi, F̂m

)

= 1 − α
}

.

However, it may be possible that S~u
α(Fm) = ∅.

S~u
α,h(Fm) =

{

xi :
∣

∣

∣
E~u

(

xi, F̂m

)

− 1 + α
∣

∣

∣
≤ h

}

,

where h is a slack.
S~u

α(Fm) ⊂ S~u
α,h(Fm).
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Estimation Method Proposed

Given {x1 . . . , xm}

S~u
α(Fm) =

{

xi : E~u

(

xi, F̂m

)

= 1 − α
}

.

However, it may be possible that S~u
α(Fm) = ∅.

S~u
α,h(Fm) =

{

xi :
∣

∣

∣
E~u

(

xi, F̂m

)

− 1 + α
∣

∣

∣
≤ h

}

,

where h is a slack.
S~u

α(Fm) ⊂ S~u
α,h(Fm).

The direction given by ~u can have influence in the estimation of
S~u

α,h(Fm).
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α(X), we propose to change the original

coordinates. Suppose

S~u
α,h(F ) = {x1, x2 . . . , xk}.

This set is transformed to
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Estimation Method Proposed

To estimate V aR~u
α(X), we propose to change the original

coordinates. Suppose

S~u
α,h(F ) = {x1, x2 . . . , xk}.

This set is transformed to

R~uS~u
α,h(F ) = {R~ux1,R~ux2 . . . ,R~uxk} . (2)

Smoothing is done using the points in (2). The resulting surf ace
is returned to original system.
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Estimation Method Proposed

Input:
~u, α, h, and the multivariate sample X = (x1, . . . , xm)

for i = 1 to m

Ei = E~u(xi, F̂m)
if |Ei − 1 + α| ≤ h

xi ∈ S~u
α,h(F̂m)

end
end

Fitting a function f on R~uS~u
α,h(F̂m)

V aR~u
α(X) = R−1

~u f
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Estimation Method

Uniforms Normals Exponentials
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