Multivariate Value at Risk Based on

Extremality

Henry Laniado Rosa E. Lillo Juan Romo

Department of Statistics Universidad Carlos III de Madrid

Paris, August 2010

Outline

1. Extremality Measure

2. Multivariate Value at Risk

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Extremality Measure

Extremality Measure

Multivariate Value at Risk

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Extremality Measure

Oriented Sub-Orthants $C_x^{\vec{u}}$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ○へ⊙

Extremality Measure

Oriented Sub-Orthants $C_x^{\vec{u}}$

Extremality Measure

Oriented Sub-Orthants
$$\mathcal{C}_n^{ec{u}}$$

Given a unit director vector $\vec{u} \in \mathbb{R}^n$ and a vertex $v \in \mathbb{R}^n$; a Oriented Sub-Orthant $C_v^{\vec{u}}$ is the convex cone given by

$$\mathcal{C}_{v}^{\vec{u}} = \left\{ x \in \mathbb{R}^{n} \mid \mathcal{R}_{\vec{u}}(x-v) \ge 0 \right\}.$$
(1)

The inequality in (1) is componentwise.

Considering the case in \mathbb{R}^2 with $\vec{u} = [u_1, u_2]'$ and the vertex $v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$,

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Considering the case in \mathbb{R}^2 with $\vec{u} = [u_1, u_2]'$ and the vertex $v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$, $\mathcal{C}_v^{\vec{u}} = \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2 : \frac{\sqrt{2}}{2} \begin{pmatrix} u_1 + u_2 & u_2 - u_1 \\ u_1 - u_2 & u_1 + u_2 \end{pmatrix} \begin{pmatrix} x_1 - v_1 \\ x_2 - v_2 \end{pmatrix} \ge \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}.$

(日) (日) (日) (日) (日) (日) (日)

Considering the case in \mathbb{R}^2 with $\vec{u} = [u_1, u_2]'$ and the vertex $v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$, $\vec{u} = \begin{pmatrix} x_1 \\ v_2 \end{pmatrix}$, $\vec{u} = \begin{bmatrix} x_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ v_2 \end{bmatrix} \begin{pmatrix} x_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ v_2 \end{bmatrix} \begin{pmatrix} x_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ v_2 \end{bmatrix} =$

$$\mathcal{C}_{v}^{\vec{u}} = \left\{ \left(\begin{array}{c} x_{1} \\ x_{2} \end{array} \right) \in \mathbb{R}^{2} : \frac{\sqrt{2}}{2} \left(\begin{array}{c} u_{1} + u_{2} & u_{2} - u_{1} \\ u_{1} - u_{2} & u_{1} + u_{2} \end{array} \right) \left(\begin{array}{c} x_{1} - v_{1} \\ x_{2} - v_{2} \end{array} \right) \geq \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \right\}.$$

(日) (日) (日) (日) (日) (日) (日)

In \mathbb{R}^2 , the director vector \vec{u} can be determined by an angle $0 \le \theta \le 2\pi$ as $\vec{u} = [\cos \theta, \sin \theta]'$ that indicates the direction of the cone.

Considering the case in \mathbb{R}^2 with $\vec{u} = [u_1, u_2]'$ and the vertex $v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$,

$$\mathcal{C}_{v}^{\vec{u}} = \left\{ \left(\begin{array}{c} x_{1} \\ x_{2} \end{array} \right) \in \mathbb{R}^{2} : \frac{\sqrt{2}}{2} \left(\begin{array}{c} u_{1} + u_{2} & u_{2} - u_{1} \\ u_{1} - u_{2} & u_{1} + u_{2} \end{array} \right) \left(\begin{array}{c} x_{1} - v_{1} \\ x_{2} - v_{2} \end{array} \right) \geq \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \right\}$$

In \mathbb{R}^2 , the director vector \vec{u} can be determined by an angle $0 \le \theta \le 2\pi$ as $\vec{u} = [\cos \theta, \sin \theta]'$ that indicates the direction of the cone.

$$\left\{ \left(\begin{array}{c} x_1\\ x_2 \end{array}\right) \in \mathbb{R}^2 : \left(\begin{array}{c} \cos(\theta - \frac{\pi}{4}) & \sin(\theta - \frac{\pi}{4})\\ -\sin(\theta - \frac{\pi}{4}) & \cos(\theta - \frac{\pi}{4}) \end{array}\right) \left(\begin{array}{c} x_1 - v_1\\ x_2 - v_2 \end{array}\right) \ge \left(\begin{array}{c} 0\\ 0 \end{array}\right) \right\}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Extremality Measure

Definition (Extremality Measure)

The Extremality of $x \in \mathbb{R}^n$ respect to a distribution function F in direction \vec{u} is a mapping $\mathcal{E}_{\vec{u}}(x, F) : \mathbb{R}^n \times \mathfrak{F} \longrightarrow R^+ \cup \{0\}$, defined by

$$\mathcal{E}_{\vec{u}}(x,F) = 1 - P_{x,\vec{u}},$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ - つへつ

where $P_{x,\vec{u}}$ is given by $P_F(\mathcal{C}_x^{\vec{u}})$.

Extremality Measure

Definition (Extremality Measure)

The Extremality of $x \in \mathbb{R}^n$ respect to a distribution function F in direction \vec{u} is a mapping $\mathcal{E}_{\vec{u}}(x, F) : \mathbb{R}^n \times \mathfrak{F} \longrightarrow R^+ \cup \{0\}$, defined by

$$\mathcal{E}_{\vec{u}}(x,F) = 1 - P_{x,\vec{u}},$$

where $P_{x,\vec{u}}$ is given by $P_F(\mathcal{C}_x^{\vec{u}})$. A natural estimator for $\mathcal{E}_{\vec{u}}(x,F)$ is given by

$$\mathcal{E}_{\vec{u}}(x,\hat{F}) = 1 - \frac{1}{m} \sum_{j=1}^{m} \mathbb{1}_{\{x_j, \in \mathcal{C}_x^{\vec{u}}\}} = 1 - \frac{1}{m} \sum_{j=1}^{m} \mathbb{1}_{\{\mathcal{R}_{\vec{u}}(x_j - x) \ge 0\}},$$

where x_1, \ldots, x_m is a sample of the random vector X, that is, 1the proportion of the point cloud that belong to $C_x^{\vec{u}}$.

Extremality Measure

Extremality Measure

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Extremality Measure

Extremality Measure

O

Extremality Measure

Extremality Measure

O

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ・豆 のへの

Extremality Measure

Extremality Measure

O

Extremality Measure

Extremality Measure

O

●●● 画 (画) (画) (画) (画)

Extremality Measure

Extremality Measure

O

Extremality Measure

Extremality Measure

O

-Extremality Measure

Extremality Measure

High extremality of a point x means that the convex cone C^{*i*}_x contains a small part of the total mass and possibly x belongs to some tail of the distribution. -Extremality Measure

Extremality Measure

- High extremality of a point x means that the convex cone C^{*i*}_x contains a small part of the total mass and possibly x belongs to some tail of the distribution.
- Hence, high extremality can be interpreted as "farness" regarding distribution

Extremality Measure

Extremality Measure

Extremality Measure

Extremality Measure

Extremality Measure

Extremality Measure

・ロト・日本・日本・日本・日本・日本

Extremality Measure

Extremality Measure

Figure: $\mathcal{E}_{\frac{1}{\sqrt{3}}[1, 1, 1]}(x, F) = \alpha$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● 今へ⊙

Extremality Measure

Properties

Property For any $x_0 \in \mathbb{R}^n$ and any absolutely continuous $F \in \mathfrak{F}$

 $\mathcal{E}_{\vec{u}}(x_0, F)$ is continuous in \vec{u} .

Extremality Measure

Properties

Property For any $x_0 \in \mathbb{R}^n$ and any absolutely continuous $F \in \mathfrak{F}$

 $\mathcal{E}_{\vec{u}}(x_0, F)$ is continuous in \vec{u} .

Property

$$\mathcal{E}_{\vec{u}}(x,F) \leq \mathcal{E}_{\vec{u}}(x^*,F) \quad \text{for all } x^* \in \mathcal{C}_x^{\vec{u}}$$

Extremality Measure

Properties

Property

Let X be a n- multivariate random variable with distribution function F. Let A a n-orthogonal matrix and let b be a vector in \mathbb{R}^n . Then

$$\mathcal{E}_{A\vec{u}}(Ax+b,F_{AX+B}) = \mathcal{E}_{\vec{u}}(x,F_X)$$

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● ● ● ● ●

Extremality Measure

Properties

Property

Let X be a n- multivariate random variable with distribution function F. Let A a n-orthogonal matrix and let b be a vector in \mathbb{R}^n . Then

$$\mathcal{E}_{A\vec{u}}(Ax+b,F_{AX+B}) = \mathcal{E}_{\vec{u}}(x,F_X)$$

Property

For $x \in \mathbb{R}^n - \{0\}$ and $\vec{u} = \frac{x}{\|x\|}$, where $\|\cdot\|$ is the Euclidean norm.

$$||x|| \longrightarrow \infty \Longrightarrow \mathcal{E}_{\vec{u}}(x, F) \longrightarrow 1.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Multivariate Value at Risk

Extremality Measure

Multivariate Value at Risk

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Suppose that F is the loss distribution and $\alpha \in [0,1]$ then

$$VaR_{\alpha}(X) := \inf\{x \in \mathbb{R} \mid F(x) \ge \alpha\}.$$

Suppose that F is the loss distribution and $\alpha \in [0,1]$ then

 $VaR_{\alpha}(X)$

A natural idea to study risk for portfolio vectors

 $X = (X_1, \ldots, X_n)$

is to consider a function $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ and one-dimensional risk measure on f(X).

A natural idea to study risk for portfolio vectors

 $X = (X_1, \dots, X_n)$

is to consider a function $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ and one-dimensional risk measure on f(X).

• The *VaR* of the joint portfolio is that associated to f(X).

A natural idea to study risk for portfolio vectors

$$X = (X_1, \dots, X_n)$$

is to consider a function $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ and one-dimensional risk measure on f(X).

- The *VaR* of the joint portfolio is that associated to f(X).
- In Burgert and Rüschendorf (2006),

$$f(X) = \sum_{i=1}^{n} X_i$$
 or $f(X) = \max_{i \le n} X_i$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The multivariate analogue of the Value at Risk is discussed in Embrechts and Pucceti (2006)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

The multivariate analogue of the Value at Risk is discussed in Embrechts and Pucceti (2006)

Multivariate lower-orthant Value at Risk

$$\underline{VaR}_{\alpha}(F) := \partial \{ x \in \mathbb{R}^n : F(x) \ge \alpha \}$$

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● ● ● ● ●

The multivariate analogue of the Value at Risk is discussed in Embrechts and Pucceti (2006)

Multivariate lower-orthant Value at Risk

$$\underline{VaR}_{\alpha}(F) := \partial \{ x \in \mathbb{R}^n : F(x) \ge \alpha \}$$

Multivariate upper-orthant Value at Risk

$$\overline{VaR}_{\alpha}(\bar{F}) := \partial \{ x \in \mathbb{R}^n : \bar{F}(x) \le 1 - \alpha \}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Let *F* be a multivariate distribution function.

Let *F* be a multivariate distribution function.

$$A_{\alpha}^{\vec{u}}(F) = \left\{ x \in \mathbb{R}^n : \mathcal{E}_{\vec{u}}(x, F) \ge 1 - \alpha \right\}.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Let *F* be a multivariate distribution function.

$$A_{\alpha}^{\vec{u}}(F) = \{x \in \mathbb{R}^n : \mathcal{E}_{\vec{u}}(x,F) \ge 1 - \alpha\}.$$

We define the Oriented Multivariate Value at Risk

$$VaR^{\vec{u}}_{\alpha}(X) = \partial A^{\vec{u}}_{\alpha}(F).$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Let *F* be a multivariate distribution function.

$$A_{\alpha}^{\vec{u}}(F) = \{x \in \mathbb{R}^n : \mathcal{E}_{\vec{u}}(x,F) \ge 1 - \alpha\}.$$

We define the Oriented Multivariate Value at Risk

$$VaR^{\vec{u}}_{\alpha}(X) = \partial A^{\vec{u}}_{\alpha}(F).$$

Particulary for
$$\vec{u} = \frac{1}{\sqrt{n}}[1, ..., 1]$$
 and $\vec{u} = -\frac{1}{\sqrt{n}}[1, ..., 1]$
 $VaR_{\alpha}^{\vec{u}}(X)$

is the upper-orthant value at risk and the lower-orthant value at risk respectively.

However, directions as $\vec{u} = \frac{1}{\sqrt{n}} [\pm 1, \dots, \pm 1]'$ and principal components can be interesting in financial applications.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

However, directions as $\vec{u} = \frac{1}{\sqrt{n}} [\pm 1, \dots, \pm 1]'$ and principal components can be interesting in financial applications.

However, directions as $\vec{u} = \frac{1}{\sqrt{n}} [\pm 1, \dots, \pm 1]'$ and principal components can be interesting in financial applications.

However, directions as $\vec{u} = \frac{1}{\sqrt{n}} [\pm 1, \dots, \pm 1]'$ and principal components can be interesting in financial applications.

(日本) (日本) (日本) (日本)

However, directions as $\vec{u} = \frac{1}{\sqrt{n_1}} [\pm 1, \dots, \pm 1]'$ and principal components can be interesting in financial applications.

$$VaR_{0.05}^{\frac{1}{\sqrt{2}}[-1,-1]}(X)$$

However, directions as $\vec{u} = \frac{1}{\sqrt{n}} [\pm 1, \dots, \pm 1]'$ and principal components can be interesting in financial applications.

Given $\{x_1 \ldots, x_m\}$

Given $\{x_1 \ldots, x_m\}$

$$S_{\alpha}^{\vec{u}}(F_m) = \left\{ x_i : \mathcal{E}_{\vec{u}}\left(x_i, \hat{F_m}\right) = 1 - \alpha \right\}.$$

However, it may be possible that $S^{\vec{u}}_{\alpha}(F_m) = \emptyset$.

Given $\{x_1 \ldots, x_m\}$

$$S_{\alpha}^{\vec{u}}(F_m) = \left\{ x_i : \mathcal{E}_{\vec{u}}\left(x_i, \hat{F_m}\right) = 1 - \alpha \right\}.$$

However, it may be possible that $S^{\vec{u}}_{\alpha}(F_m) = \emptyset$.

$$S_{\alpha,h}^{\vec{u}}(F_m) = \left\{ x_i : \left| \mathcal{E}_{\vec{u}}\left(x_i, \hat{F}_m\right) - 1 + \alpha \right| \le h \right\},\$$

where h is a slack.

$$S^{\vec{u}}_{\alpha}(F_m) \subset S^{\vec{u}}_{\alpha,h}(F_m).$$

Given $\{x_1 \ldots, x_m\}$

$$S_{\alpha}^{\vec{u}}(F_m) = \left\{ x_i : \mathcal{E}_{\vec{u}}\left(x_i, \hat{F_m}\right) = 1 - \alpha \right\}.$$

However, it may be possible that $S^{\vec{u}}_{\alpha}(F_m) = \emptyset$.

$$S_{\alpha,h}^{\vec{u}}(F_m) = \left\{ x_i : \left| \mathcal{E}_{\vec{u}} \left(x_i, \hat{F}_m \right) - 1 + \alpha \right| \le h \right\},\$$

where h is a slack.

$$S^{\vec{u}}_{\alpha}(F_m) \subset S^{\vec{u}}_{\alpha,h}(F_m).$$

The direction given by \vec{u} can have influence in the estimation of $S^{\vec{u}}_{\alpha,h}(F_m)$.

To estimate $VaR^{\vec{u}}_{\alpha}(X),$ we propose to change the original coordinates. Suppose

$$S^{\vec{u}}_{\alpha,h}(F) = \{x_1, x_2 \dots, x_k\}.$$

This set is transformed to

To estimate $VaR^{\vec{u}}_{\alpha}(X)$, we propose to change the original coordinates. Suppose

$$S^{\vec{u}}_{\alpha,h}(F) = \{x_1, x_2 \dots, x_k\}.$$

This set is transformed to

$$\mathcal{R}_{\vec{u}}S^{\vec{u}}_{\alpha,h}(F) = \{\mathcal{R}_{\vec{u}}x_1, \mathcal{R}_{\vec{u}}x_2\dots, \mathcal{R}_{\vec{u}}x_k\}.$$
(2)

(日) (日) (日) (日) (日) (日) (日)

Smoothing is done using the points in (2). The resulting surface is returned to original system.

Input:

$$\begin{split} \vec{u}, \ \alpha, \ h, \ \text{ and the multivariate sample } \mathbb{X} &= (x_1, \dots, x_m) \\ \text{ for } i = 1 \text{ to } m \\ \mathcal{E}_i &= \mathcal{E}_{\vec{u}}(x_i, \hat{F_m}) \\ \text{ if } |\mathcal{E}_i - 1 + \alpha| \leq h \\ x_i \in S_{\alpha,h}^{\vec{u}}(\hat{F_m}) \\ \text{ end } \\ \text{ end } \\ \\ \text{Fitting a function } f \text{ on } \mathcal{R}_{\vec{u}} S_{\alpha,h}^{\vec{u}}(\hat{F_m}) \\ VaR_{\alpha}^{\vec{u}}(X) &= \mathcal{R}_{\vec{u}}^{-1} f \end{split}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ - つへつ

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

◆□▶ ◆□▶ ◆三≯ ◆三≯ ● ● ●

Multivariate Value at Risk

thanks for your attention

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで