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1. Introduction

Time series observations are often perturbed by some unusual
events, such as sudden political tactor, economic crises, and even
typing or recording errors. Such values are usually referred to as
outliers. There may be 1solated outliers or patches of outliers in a
time series. Outliers may have a significant impact on model 1den-
tification and parameter estimation for time series. A special case
of multiple outliers 1s a patch of additive outliers, Justel et al.(2001)
proposed a procedure to detect outlier patches in an autoregressive
process. Chen(1997) did a lot in the detection of additive outliers in

bilinear time series. We know that the ARMA X model 1s more com-



plex than ARMA model. It is widely used in engineering, finance
and signal management.

In this paper, based on some different prior distributions, an
adaptive Gibbs sampling algorithm is proposed for identifying addi-
tive 1solated outliers and patches of outliers in nonlinear time series.
First, we introduce Outliers models and identification of ARMAX
series. Second, we propose Gibbs sampling methods to mine out-
liers and patches in the view of Bayesian. At last, some case studies
show that the algorithm 1s eftfective in detecting the locations of out-
liers and patches and in estimating their size tor the ARMAX models

and bilinear models.



2. Outliers models and identification of ARMAX series

An ARMA model with input process 1s called ARMAX model,

which 1s defined as

Z;:

M-

vi( B)X;; + ny, (2.1)
i=1

where v;(B) = (w;(B)/5§,(B))B" is the transfer function of ith input

process, n; = (8(B)/p(B))e; 1s noise process, {Z,} 1s called response

process. And X;, denotes the ith input process or the difference of

ith input process at time 7, k; presents the influence’s time delay of

ith input process, {&;} 1s normal white noise process, ¢(B) and 6(B) 1s
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defined as: o(B) = 1 -1 B—---—¢,B", 6(B) =1+6,B+---+6,B7,
and the B 1s the backshitt operator. Whenvi(B) =0,i=1,...,d, (2.1)
1S ARMA model, when some v;(B) 1s nonzero constant, 1 = 1, ...,d,
then (2.1) 1s regression model with ARMA error.

The additive outliers(AO) model 1s as follows:

Suppose that only the jth point z; 1s an AO, with influence
magnitude S, ;, then we have

d
Zi= ) viB)Xiy +Bi0rsj + M (2.2)

i=1
where o, ,; 1s Kronecker symbol: If 7 = 7/, then o,,; = 1, else ¢,,; = 0.
Considerable simplification in the identification process would

occur 1f the input to the system were white noise. Similar to (2.1),

v



suppose that the ARMAX model of only one mnput process is as
follows:
Z, = 6 (BYW(B)Xi—p + n; = V(B)X, + s, (2.3)

atter "prewhitening’ the input, the cross correlation function between
the prewhitened iput and correspondingly transtormed output is di-
rectly proportional to the response function. In practice, we do not
know the theoretical function p,,(k), so we must substitute estimates
in v to give ;. The preliminary estimates v, can provide a rough ba-
s1s for selecting suitable transfer function model. First, we may use
the estimates v, so obtained to make guesses ot the order r1 and 2

of &(B) and w(B), and of the delay parameter m. Second, we do not
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consider the noise n, now, substituting Z, = v(B)X; in the equation
o(B)Z, = w(B)B"X,, based on equating coefhicients of B, to obtain

initial estimates of the parameters 6(B) and w(B) in (2.3).

3. Outliers detection for ARMAX model via standard Gibbs

sampling

We detect AO type outliers in ARMAX model by Gibbs sam-
pling based on Bayesian method. The 1dea is as follows: Suppose
the probability that observation is outlier has some prior information.
Based on the method of conjugate priors, we proved some theorems
which gives the expressions of some posterior distributions, then we

compute the posterior probabilities for each data point to be an AO
8



type outlier using techniques of Gibbs sampling. If the posterior
probability is larger than some prescribed value, then we consider it
as an AO type outlier.

Since output z; may be an outlier at each time point, we let
0, = 1 if the observation at this time point is an additive outlier. Let
o, = 0 1f 1t 1s an outlier-free time point, and denote P(o; = 1) = «a.

Then the general ARMA model with additive outlier 1s as follows

e : 1 ¢
Ve = 2y GiYe-i + &+ 25 0jE

ﬁ g ~NO,0%). (3.1
:3‘ — }"; + (‘)Iﬁja

[t means that the observation z; may be AO with probability «, its
magnitude 18 S, at time 7 . For simplicity, assume that y, ..., y, are
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fixed and z; = y, forr = 1, ..., p, 1.e. there exist no outliers in the first
p observations. The indicator vector of outliers then becomes 6 =
(Op+1-0ps2, ..., 0y)" and the size vector 18 8 = (Bpi1.5p+2, - Bn). Let
g, denote the residual estimation of model (3.1) without AO. And let
E=(&,...&1).e=(&1,..,6121), 0 = (1.2, ... ), 01,601, ....6,),

= (21,22, ... %) and @,y = (y—1, V-2, cees Vi—pos Eels ees éf—q)!- By

2]

v, = O'D,_; + &, we can obtain the likelthood function

l

3
20°

L®,02,6.6,a | 7,8) < " Pexpi— Z@,—@’@,_,)E}, (3.2)

t=p+1
where y, = 7, — 0,5;.
For computational reason, we use conjugate prior distribution

for parameters ® and o>, which distributed as multidimensional uni-
10



form distribution on [0,1] region and inverted-Gamma distribution
1G(3, %) respectively. Assume that the outlier indicator , and the
outlier magnitude S; are independent and distributed as Bernoulli(a)
and N(0, 7°) respectively for all r. Then, the prior probability of
being contaminated by an outlier is the same for all observations,
namely P(6; = 1) = a, fort = p + 1,....n. The prior distribution
of the contamination parameter « is Beta(y,,y>). and (3,)"s are i.i.d.
for all . The hyperparameters in our model are A, v, ;. y> and 72, all
of which are assumed known.

[t 1s obvious that we must obtain the conditional posterior dis-

tributions of parameters (®, 3,6, a. o) for detecting outliers in the
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model. The important thing is to conduct the conditional posterior
distributions of 6; = | and ;. Let z = (2.2, ..., 7,) denote the ob-
served vector of model (3.1). Using the standard Bayesian method,
under the above conditions, we have the following results:
Theorem (1) For the conditional posterior distribution of

0; =1, we have

[)((Sj' = llf,.,(s{_j),ﬁ, @,{TE,G’) — [l +

where 0. 18 obtained from ¢ by eliminating the element 0;, T; =

mini{n, j + p}, and

T;

l 7 7
Bu()) = explz—1 ) ai(1) = ) a;(O)])

=] 1=]

T;




where a,(1) = (y, = O’ D,_y)s -1, a,(0) = (y, = O'D,_1)5,—¢ and a,(0) =
a(l) + ¢, ;. When p = 0, then ¢; = 0 for all i ; when p > 0, we
have that ¢; = =11ti =0, ¢; = ¢;1ti = 1,...,p, and ¢; = 0 1f
[ >p+ 1.

(2) When ¢0; = 0, there 1s not any new information about the
posterior distribution of 8;, namely, 8; distributed as N(0, 7°). When

= |, since g, contains information of S;, so we have that

pBilz, 0.8 O, o, Q) ~ N(ﬁj, TT)

where S_; 18 obtained tfrom S by elimimting the element ,8;, and

e 7e Efr ”_ where A = — Z a (g j,and B = Z (pr i
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We give the Gibbs method for detecting AO in ARMAX model
as follows: a. Given the starting point (1, Vv, y;.y», 7>, @), where-
after this algorithm iterates the following loop: b. sample @' from
p(B|z,5"V, =D o= 2=y ¢, sample > from p(c~|z, 7, 571,
BV o=y d. sample 6}” from p(d,lz, 0", ", g7 a1, e,
sample ﬁif) from p(B;lz, @7, 2", §, "=V, f. sample o' from Bera(y;
+k,y> + n — p — k), repeat the above steps till 1t 1s convergence.
From the Bayesian principle, we suppose that if the outlying poste-

rior probability 1s larger then ¢y, then believe it is an outlier.
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4. Detection of outlier patches via adaptive Gibbs sampling

Similar to Justel et al.(2001), our procedure also consists of
two Gibbs runs. In the first run, the standard Gibbs sampling based
on the results of Section 3 1s carried out. The results of this Gibbs run
are then used to implement a second Gibbs sampling that 1s adaptive
in treating identified outliers and in using block interpolation to re-
duce possible masking and swamping effects. Let @, &%, B9
and &' be the posterior means of ®, o2, S and a respectively based
on the s iterations of the first Gibbs run. First, we select a appropri-
ate critical value ¢ to identity potential outliers. An observation z;
1s 1dentified as an outlier 1f the posterior probability f}{;"} > ¢q. Let

15



{t1, ..., tn} be the collection of time indexes of outliers identified by
the first Gibbs run. Second, let ¢;>,¢; < ¢y be another appropriate
critical value to specity the beginning and end points ot a potential
outlier patch. We select a window of length 2p around the 1dentitfied
outlier to search for the boundary points of a possible outlier patch
by a forward-backward method. For example, consider an identified
outlier z,, . For the p observations before z,. , if their posterior prob-
abilities f}{f.'*'} > (5, then these points are regarded as possible outlier
patch associated with Z.- We then select the farthest point from gz,
as the begining point of the outlier patch. Denote the point by z,._;..
Then we do the same for the p observations after z,, and select the
farthest point from z, with ﬁﬂ"’j > ¢, as the end point of the out-
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lier patch. Denote the end point by z,,,.. Combine the two blocks
to form a possible outlier patch associated with z,., which denoted
by (Z;—k,» -+ »Z4+v,). Consecutive or overlapping patchs should be
merged to form a larger patch. Lastly, draw Gibbs samples jointly
within a patch. Suppose that a patch of k outliers starting at time
index ; 1s specified. Denote the vectors of outlier indicators and
magnitudes by 0, = (5, ,0;u-1)" and B = (B, . Bjak-1)",
respectively, associated with the patch. Similar to the Theorem 1 of
Justel et al.(2001), we may obtain the conditional posterior distribu-
tions of §;; and S .

FFor the second adaptive Gibbs sampling, we use the results of
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the first Gibbs run to start the second Gibbs sampling and to specity
prior distributions of the parameters. For each outlier patch, we use
the conditional posterior distributions to draw ¢ ;; and 4 in the sec-
ond Gibbs sampling, which 1s also run for s iterations. The starting
values of 8, are as follows: 8\ = 1 if p\”’ > 0.3, otherwise, 8" = 0.
Then the prior distributions of 3, are as tollows.

(a) If z, 1s identihied as an 1solated outlier, then the prior distri-
bution of A, is N(B\", 72), where " is the Gibbs estimate of /3, from
the first Gibbs run.

(b) It z; belongs to an outlier patch, then the prior distribution

- - ~(§ ~(g) . o -
of B, 18 N(,Bi”,‘rz), where 3,” is the conditional posterior mean as
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follows:
Tk Tk
Bix = Dy > T I_ D (= ) e (0)DI,))
t=] =]

(c) It z, does not belong to any outlier patch, and is not an

. . . . . . - . 3
1solated outlier, then the prior distribution of 3, 1s N(0, 7).
5. Simulation studies and conclusions

Example A. In the simulations, we consider the ARMAX(1,1,2)

model:

( (1 -0.78B+03B%)x, = ¢,
(1 -0.7B)y, = (1 -0.7B)(1 —0.48B)x, + (1 — 0.27B + 0.96B%)g,
Zt =yr — 116131 + 10630 — 96,33 + 100,34 — 90:35 + 106; 50,

(5.1)

..




where {¢,} and {&,} are all normal white noise, their means are zero
and variance o = 1.

We create 101 observations xp, x1,--- . x100 of x; and 100 ob-
servations zy,2, - - ,Zj00 of z; by simulation. It i1s obvious that
the input process 1s an AR(2) series, the transfer function of the
ARMAX model 1s (1 — 0.48B), a patch of five consecutive addi-
tive outliers have been introduced from r = 31 to t+ = 35, a sin-
gle AO has been add at r = 50, and the outlier magnitudes are
B3 = =11, B3 = 10, B33 = =9, B34 = 10, B35 = =9 and B50 = 10
respectively. Applying our method to the above simulate series |z}
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and prewhitening the input series. Making {x;} follows an ARMA
model: (1 — 0.41117B)x, = &. Then we take the same manip-
ulation of prewhitening the {z;}. By analyzing filtered cross cor-
relation coefiicient of {z,} and {x,}, we obtain the transfer function
[.00597 — 0.1568B for {x,}. Note that the transfer function was in-
fluenced by outliers. In order to delete the influence of input process
{x;} in response process {z,}, we let 77 = z, — (1.00597 — 0.1568 B)x;,.
Then we can apply the method described above to detect the outliers

in {z; }, which are just the outliers of {z,}.
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Fig.1 The curve of observations {z;} in example A.



Lety,; =5, =95, v=3, 1=0%/3,a=05,¢,=05, ¢c; =
0.3 and T = 37, where & is mean square error of {z,}. Here y; = 5
means that we believe the prior probability of each point is an outlier
approximate to 0.05. First, we detect the outliers in {z,} using the
standard Gibbs sampling. Limit to the computational ability, we take
[00 1terations by usual Gibbs algorithm. We obtain the posterior
probabilities that each observation is outlier, the Figure 2 shows that
the posterior probabilities of being an outlier for data points at 1t =
31,33,34,35,36,50 are large. Meanwhile, the outlying posterior
probabilities of other observations are low. We see that the algorithm
fails to detect the inner point at r = 32 of the patch, resulting in the

masking effect. On the other hand, the algorithm misspecifies the
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3

good’ data point at t = 36 as outlier because the outlying posterior
probability of this point is larger, so the "good”™ data point at r = 36
1s swamped by the patch of outliers. Second, in order to avoid the
presence of masking and swamping problem, we use the method
given by section 4, and take 900 iterations by the adaptive Gibbs
algorithm. The Figure 3 shows the posterior probability of outlier
for each data point, which clearly shows that the patch of outliers
and the 1solated outlier in {z;} process are detected triumphantly, and
there is not any misjudgement. The posterior means ot the sizes of
these outliers are BHI = —5.9849,)@33 = 14.4163,333 = —16.5910,
B = 14.4383, B35 = —14.6142 and Bso = 3.8853, respectively.
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Fig.2 The posterior probability that each point is an outlier via standard Gibbs

sampling in example A.
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Fig.3 The posterior probability that each point is an outlier via adaptive Gibbs

algorithm in example A.



Stmilar to the method above, we also could detect the outliers
and patches in bilinear time series models by adaptive Gibbs sam-
pling algorithm. We omit the theoretics and give an example as fol-
lows

Example B. In the following example, we consider the BL(1,1,1,1)

model:
0.7y, + & — 03,1 +0.31y,_,15_ (

Vi + 40,40 — 30141 + 30; 42,

N
[~
L

"}‘ { =
o d —_—
“f T

where {&,} 1s standard normal white noise.
We create a set of observations of the bilinear model (5.2) by

simulation, where a patch of three consecutive additive outliers have
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been introduced from = 40 to r = 42, and the outlier magnitudes
are B40 = 4,841 = =3 and B4, = 3 respectively. The figure shows that
the curve of observations has large volatility, it would be very diffi-
cult to distinguish between "outliers” and normal points of nonlinear

model.

First, we detect the outliers in {z,} using the standard Gibbs
sampling. We obtain the posterior probabilities that each observa-
tion is outlier, the Figure 5 obviously shows that the posterior prob-

abilities of being outlier only at r = 40 1s large than 0.5. Meanwhile,
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Fig.4 The curve of observations {z;} in example B.



the outlying posterior probabilities of other observations are low, the
posterior probability of being an outlier at 7 = 41 1s even small than
0.2. However, the posterior probability of being an outlier at r = 57
is larger than at 7 = 41,42. We see that the standard Gibbs sampling
fails to detect the inner and border points at r = 41,42, resulting
in the masking effect. On the other hand, the algorithm 1s apt to
misspecify the 'good’ data point at r = 57 as outlier because the out-
lying posterior probability of this point 1s larger than every points
but the point at + = 40, so that the "good” data point at r = 57 may be

swamped by the patch of outliers.
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Fig.5 The posterior probability that each point is an outlier via standard Gibbs

sampling in Example B.



Second, in order to avoid the presence of masking and swamp-
ing problem, we apply the similar method given by section 4, and
take 900 iterations by the adaptive Gibbs algorithm. In the pro-
cess of running, we let the initial distribution of ® be N(0,0.31).
The Gibbs sampler was repeated several times with different hyper-
parameters and different numbers of iterations to reanalyze the data.
The results show that the locations ot possible outliers and patch are
stable, even though the estimated outlying probabilities may vary
slightly between the Gibbs samples. The figure 6 gives the time plot

of the estimated posterior probability that each point 1s an outlier via
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adaptive Gibbs sampling, the window width of search was 4.
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Fig.6 The posterior probability that each point is an outlier via adaptive Gibbs

algorithm in Example B.



[t obviously shows that the posterior probability of being an
outlier obtained by adaptive Gibbs algorithm for data points at 1 =
40,41,42 are large. Meanwhile, the outlying posterior probabilities
of other observations are low. Actually, it select the critical value
c» = 0.3, then we could 1dentity the patch. On the other hand, many
normal points which were similar to outliers do not be misspeci-
fied as outliers because the outlying posterior probabilities of these
points are smaller than 0.3, which show that the adaptive Gibbs sam-

pling 1s effective in mining the additive outlier patch of bilinear time
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Series.

Furthermore, the posterior means ot the sizes of these outliers
are 40 = 4.1652, 341 = =5.7693 and By = 3.4172, respectively. By
a number of stmulations which detect the patches in bilinear model
by adaptive Gibbs sampling, we discovered that the critical value ¢,
should be selected smaller than ARMA model. Investigate its rea-
son, it may be the volatility of bilinear series is larger than ARMA
series, and 1tselt could often produce some normal points which ap-

pear to be outliers.
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