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Framework

Figure: Experimental framework

4 kinds of chair (shapes)
100 000 voxels (variables)

72 observations
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Framework

Random Forests

introduced by L. Breiman in 2001

ensemble methods, Dietterich (1999) and (2000)

popular and very efficient algorithm of statistical learning,
based on model aggregation ideas, for both classification and
regression problems.

We consider a learning set Ln = {(X1,Y1), . . . , (Xn,Yn)} made of
n i.i.d. observations of a random vector (X ,Y ).

Vector X = (X 1, ...,X p) contains explanatory variables, say
X ∈ Rp, and Y ∈ Y is a class label.

A classifier h is a mapping h : Rp → Y.
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CART

CART (Classification And Regression Trees, (Breiman et al.
(1984)) can be viewed as the base rule of a random forest.
Recall that CART design has two main stages:

maximal tree construction to build the family of models

pruning for model selection

With CART, we get a classifier, which is a piecewise constant
function obtained by partitioning the predictor’s space.
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CART
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CART

Growing step, stopping rule:

do not split a pure node

do not split a node containing less than nodesize data

Pruning step:

the maximal tree overfits the data

an optimal tree is pruned subtree of the maximal tree which
realizes a good trade-off between the variance and the bias of
the associated model
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Bagging
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Random Forests

CART-RF

We define CART-RF as the variant of CART consisting to select at
random, at each node, mtry variables, and split using only the
selected variables. The maximal tree obtained is not pruned.

mtry is the same for all nodes of all trees in the forest.

Random forest (Breiman 2001)

To obtain a random forest we proceed as in bagging. The
difference is that we now use the CART-RF procedure on each
bootstrap sample.
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Random Forests

OOB = Out Of Bag.

OOB error

Consider a forest. For one data (Xi ,Yi ), we only keep the
classifiers hk built on a bootstrap sample which does not contain
(Xi ,Yi ), and we aggregate these classifiers. We then compare the
predicted label we get to the real one Yi .

After doing that for each data (Xi ,Yi ) of the learning set, the
OOB error is the proportion of misclassified data .
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Random Forests

R package:

seminal contribution of Breiman and Cutler (early update in
2005)

described in Liaw, Wiener (2002)

Focus on the randomForest procedure whose main parameters
are:

ntree, the number of trees in the forest (default value : 500)

mtry, the number of variables randomly selected at each node
(default value :

√
p)
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Variable Importance

Breiman (2001), Strobl et al. (2007) and (2008), Ishwaran (2007),
Archer et al. (2008).

Variable importance

Let j ∈ {1, . . . , p}. For each OOB sample we permute at random
the j-th variable values of the data. The variable importance of the
j-th variable is the mean increase of the error of a tree.

The more the increase is, the more important is the variable.
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Procedure

We distinguish two different objectives:

1 to magnify all the important variables, even with high
redundancy, for interpretation purpose

2 to find a sufficient parsimonious set of important variables for
prediction

Two earlier works must be cited:

D́ıaz-Uriarte, Alvarez de Andrés (2006)

Ben Ishak, Ghattas (2008)

Our aim is to build an automatic procedure, which fulfills these
two objectives.



Introduction Variable Selection

Procedure

“Toys data”, Weston et al. (2003)
an interesting equiprobable two-class problem, Y ∈ {−1, 1}, with 6
true variables, the others being noise:

two near independent groups of 3 significant variables (highly,
moderately and weakly correlated with response Y )

an additional group of noise variables, uncorrelated with Y

Model defined through the conditional distributions of the X i for
Y = y :

for 70% of data, X i ∼ yN (i , 1) for i = 1, 2, 3 and
X i ∼ yN (0, 1) for i = 4, 5, 6

for the 30% left, X i ∼ yN (0, 1) for i = 1, 2, 3 and
X i ∼ yN (i − 3, 1) for i = 4, 5, 6

the other variables are noise, X i ∼ N (0, 1) for i = 7, . . . , p



Introduction Variable Selection

Procedure

Genuer, Poggi, Tuleau (2010)

1 Preliminary ranking and elimination:

Sort the variables in decreasing order of RF scores of
importance
Cancel the variables of small importance. Let m be the
number of remaining variables

2 Variable selection:
For interpretation:

Construct the nested collection of RF models involving the k
first variables, for k = 1 to m
Select the variables involved in the model leading to the
smallest OOB error

For prediction (conservative version):

Starting from the ordered variables retained for interpretation,
construct an ascending sequence of RF models, by invoking
and testing the variables stepwise
The variables of the last model are selected
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Procedure

Figure: Variable selection procedure for interpretation and prediction:
toys data n = 100, p = 200
- True variables (1 to 6) represented by (B,4, ◦, ?,C,�)
- VI based on 50 forests with ntree = 2000, mtry = 100
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Application to fMRI data

Figure: Experimental framework

4 kinds of chair ⇒ 4 classes.
Whole brain: raw data are made of 100 000 voxels (variables) and
72 observations. A parcellation obtained by Ward algorithm
reduces to 1000 parcels.
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Application to fMRI data

Figure: Variable selection procedures for a real subject, ntree = 2000,
mtry = p/3
- Key point: it selects 176 variables after the threshold step, 50 variables
for interpretation, and 15 variables for prediction (very much smaller than
p = 1000)
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Application to fMRI data

(a) (b) (c)

Figure: Example of the different steps of the framework on a real subject.

(a) Elimination Step (b) Interpretation Step (c) Prediction Step
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Application to fMRI data

Figure: Regions selected in at
least 3 subjects among 12 by the
last step of the RF-based
selection.
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Application to fMRI data

Figure: Classification rates (whole brain)
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