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The median in R
A ”central” notion in statistics since Laplace.

For a random variable taking values in R :

”the” (may not be unique) value m such that P(X ≤ m) = 0.5 .

Another characterization of the median m

E (sign(X −m)) =

∫
sign(X (ω)−m)dP(ω) = 0.

Since sign(X −m) = X−m
|X−m| , we also have the following characterization,

m = arg min
z∈R

E |X − z | .

• The quantile of order α, for α ∈]0, 1[, is defined by P(X ≤ qα) = α.
Equivalently,

qα = arg min
z∈R

E [|X − z |+ (2α− 1)(X − z)] .



The geometric median in Rd (or in a separable Hilbert
space H)

In the Euclidean space Rd equipped with its usual norm ‖ ‖, a natural
generalization of the median

m := arg min
z∈H

E‖X − z‖,

called geometric or spatial median (Haldane, 1948).

Property (Kemperman, 1987)
If the space H is strictly convex, the geometric median m is unique,
unless the support of X is within a one dimensional subspace.

• Examples of strictly convex spaces :
- Euclidean spaces Rd , when d > 1,
- separable Hilbert spaces H,
- some Banach spaces (Lp, 1 < p <∞).

• Support condition :
∃(u1, u2) ∈ H × H, 〈u1, u2〉 = 0, Var(〈u1,X 〉) > 0 and Var(〈u2,X 〉) > 0.



Characterization of the geometric median

We suppose there are no atoms (∀x ∈ H, P(X = x) = 0).

Then G : H 7→ R defined by G (x) = E‖X − x‖, is strictly convex and
Fréchet différentiable

Φ(x) := ∇Gx = −E
(

X − x

‖X − x‖

)
.

The median m is characterized by ∇Gm = 0.

G has a second order Fréchet derivative, at point m, Γm : H 7→ H,

Γm := E
[

1

‖X −m‖

(
IH −

(X −m)⊗ (X −m)

‖X −m‖2

)]
,

where IH is the identity operator and u ⊗ v = 〈u, .〉v , for (u, v) ∈ H2.

If E‖X −m‖−1 <∞, then Γm is a bounded and strictly positive
operator. There are constants, ∞ > E‖X −m‖−1 = λM > λm > 0,

λM‖u‖2 ≥ 〈Γmu, u〉 ≥ λm‖u‖2, ∀u ∈ H.



Robustness : the influence function
Consider a distribution P0 contaminated by a point-mass distribution at
z ∈ H,

Pε,z = (1− ε)P0 + εδz .

The influence function

IFm(z) = lim
ε→0

m(Pε,z)−m(P0)

ε

is a measure of the sensitivity of the median m to a small perturbation of
the target distribution.

Property

IFm(z) = Γ−1
m

z −m

‖z −m‖
and the gross error sensitivity is bounded as follows

sup{‖IFm(z)‖, z ∈ H} =
1

λm
.

• The gross error sensitivity is not bounded for the mean.



Estimation in Rd

Suppose we have a sample of n independent realizations, X1, . . . ,Xn.
The usual estimator of m (Gower, 1974, Vardi & Zhang, 2000, Gervini,
2008) is characterized by

n∑
i=1

Xi − m̂

‖Xi − m̂‖
= 0,

Iterative and rather long procedures are needed (Newton-Raphson or
Weiszfeld) to get a numerical solution

n∑
i=1

Xi − m̂

‖Xi − m̂‖
= 0 ⇒ m̂e+1 =

n∑
i=1

pi (m̂e) Xi .

Property (Haberman, 1989, Niemiro, 1992).
If H = Rd , when n→ +∞,

√
n (m̂n −m)  N (0, Γ−1

m Var(S(X −m))Γ−1
m )

with S(u) = u/‖u‖, u ∈ Rd .



A very simple and very fast algorithm

We consider the algorithm

mn+1 = mn + γn
Xn+1 −mn

‖Xn+1 −mn‖

and suppose the steps γn are such that ∀n, γn > 0,∑
n≥1

γn =∞ and
∑
n≥1

γ2
n <∞.

Advantages

• For a sample of n realizations in Rd : O(nd) operations.
• No need to store all the data (data streams)

• Automatic update (online estimation)



A Robbins-Monro (1951) algorithm

This algorithm (stochastic gradient) can also be written

mn+1 = mn − γn ( Φ(mn)︸ ︷︷ ︸
gradient

+ζn+1),

with ζn+1 = − Xn+1−mn

‖Xn+1−mn‖ − Φ(mn).

• If the Xn are i .i .d ., the sequence ζn+1 is a martingale difference,

E (ζn+1 | Fn) = 0 avec Fn = σ(X0, . . . ,Xn).

Moreover,
E
(
‖ζn+1‖2|Fn

)
≤ 4.



A remark on geometric quantiles estimation

This approach can be extended directly to get stochastic approximations
to geometric quantiles (Chaudhuri, 1996).

Consider a vector u ∈ H, such that ‖u‖ < 1.
The geometric quantile of X , say mu, corresponding to direction u, is
defined, uniquely under previous assumptions, by

mu = arg min
Q∈H

E (‖X − Q‖+ 〈X − Q, u〉) .

It is characterized by

Φu(mu) = Φ(mu)− u = 0.

The following stochastic approximation

m̂u
n+1 = m̂u

n + γn

(
Xn+1 − m̂u

n

‖Xn+1 − m̂u
n‖

+ u

)
.



A convergence result in Hilbert spaces

Result (Cardot, Cénac, Zitt 2010)
The sequence mn converges almost surely when n tends to infinity,

‖mn −m‖ → 0, p.s.

• Sketch of the proof (classical)
Show that for all ε ∈]0, 1[, P(Ωε) = 0, with

Ωε =
˘
ω ∈ Ω : ∃nε(ω) ≥ 1, ∀n ≥ nε(ω), ε < Vn(ω) < ε−1

¯
considering that

lim
n→∞

EVn+1 = EV0 + lim
n→∞

0BB@ nX
j=1

γ2
j + 2

nX
j=1

γn E 〈Φ(mn),m −mn〉| {z }
<−λεε in Ωε

1CCA ≤ C

Property
For all r > 0, the function G restricted to x ∈ B(m, r) is strongly convex : ∃λr > 0,
such that ∀x ∈ B(m, r)

〈Φ(x), x −m〉 ≥ G(x)− G(m) ≥ λr‖x −m‖2 .



Does it really work ?
A sample with Gaussian distribution,

with mean (0, 0) and variance
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Not really, even for simple examples ! ! !

mn+1 = mn +
g

n3/4

Xn+1 −mn

‖Xn+1 −mn‖
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Averaging : a magic formula

Consider now the mean of all past iterations, m̄n =
1

n

n∑
j=1

mj ,
mn+1 = mn + γn

Xn+1 −mn

‖Xn+1 −mn‖
m̄n+1 = m̄n +

mn+1 − m̄n

n + 1

Property (in Rd)
• If γn = g/nα, 0.5 < α < 1,

√
n (m̄n −m) N (0,∆) in distribution,

where ∆ is the same variance matrix as for m̂n,
∆ = Γ−1

m Var(S(X −m))Γ−1
m with S(u) = u/‖u‖, u ∈ Rd .

Proof : As in Polyak & Juditsky (1992).



200 samples with size n = 2000.
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Example : electricity consumption curves
• EDF (Electricité de France) has planned to install communicating
meters (30 millions). Survey sampling techniques will be used to select
300 000 meters which will provide individual electricity consumption at
fine time scales.

• A first test on a population of N = 18900 giving electricity
consumption every 30 minutes.
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Example : median trajectory
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Perspectives

• Averaging in Hilbert spaces H :
still no results on nonlinear algorithms in the literature.

• Discretized noisy trajectories

Zn =
(
Xn(tn

1 ) + ε1n, . . . ,Xn(tn
pn

) + εpnn

)
• Covariates : conditional geometric median

m(X |Z = z) = β0 + β1z

where Z is for example the mean consumption of the week before.
We look for

min
(β0,β1)∈H×H

E‖X − (β0 + β1Z )‖

• (robust) Clustering with medians based on ‖.‖ (k-median).


