
Computation of the Aggregate Claim Amount
Distribution Using R and actuar

Vincent Goulet, Ph.D.



Actuarial Risk Modeling Process

1 Model costs at the individual level
→ Modeling of loss distributions

2 Aggregate risks at the collective level
→ Risk theory

3 Determine revenue streams
→ Ratemaking

4 Evaluate solvability of insurance portfolio
→ Ruin theory



What actuar Is

A package providing additional Actuarial Science functionality to
the R statistical system

Distributed through the Comprehensive R Archive Network
(CRAN)
Currently provides:

17 additional probability distributions
loss modeling facilities
aggregate claim amount calculation
fitting of credibility models
ruin probabilities and related quantities
simulation of compound hierarchical models



Yes But. . . Why R?

Compare

x <- matrix(2, 3, 10:15) vs x _ 2 3�9 + 6

Multi-platform

Interactive

State-of-the-art statistical procedures, random number
generators and graphics



Collective Risk Model

Let

S : aggregate claim amount

N : number of claims (frequency)

Cj : amount of claim j (severity)

We have the random sum

S = C1 + · · ·+ CN

We want to find

FS(x) = Pr[S ≤ x ]

=
∞

∑
n=0

Pr[S ≤ x |N = n]Pr[N = n]

=
∞

∑
n=0

F ∗nC (x)Pr[N = n]



Collective Risk Model

Let

S : aggregate claim amount

N : number of claims (frequency)

Cj : amount of claim j (severity)

We have the random sum

S = C1 + · · ·+ CN

We want to find

FS(x) = Pr[S ≤ x ]

=
∞

∑
n=0

Pr[S ≤ x |N = n]Pr[N = n]

=
∞

∑
n=0

F ∗nC (x)Pr[N = n]



Collective Risk Model

Let

S : aggregate claim amount

N : number of claims (frequency)

Cj : amount of claim j (severity)

We have the random sum

S = C1 + · · ·+ CN

We want to find

FS(x) = Pr[S ≤ x ]

=
∞

∑
n=0

Pr[S ≤ x |N = n]Pr[N = n]

=
∞

∑
n=0

F ∗nC (x)Pr[N = n]



What actuar Tries Not To Be

� �
�
(Clueless user)

−→ −→ Magic!



What actuar Tries Not To Be

� �
�
(Clueless user)

−→ −→ Magic!



What actuar Tries Not To Be

� �
�
(Clueless user)

−→ −→ Magic!



What actuar Tries Not To Be

� �
�
(Clueless user)

−→ −→ Magic!



What actuar Tries Not To Be

� �
�
(Clueless user)

−→ −→ Magic!



What actuar Tries Not To Be

� �
�
(Clueless user)

−→ −→ Magic!



What We’re Presenting Here Today

� ��
(Insightful user)

−→ aggregateDist() −→ FS(x)



How We Can Tackle the Problem

1 Carry out the convolutions F ∗kC (x) for k = 0, 1, 2, . . .

!

2 Use a Normal approximation

!

FS(x) ' Φ
(

x − µS

σS

)
3 Use the Normal Power II approximation

!

FS(x) ' Φ

(
− 3

γS
+

√
9

γ2
S
+ 1 +

6
γS

x − µS

σS

)

4 Use simulation:

!

FS(x) ' Fn(x) =
1
n

n

∑
j=1

I{xj ≤ x}



How We Can Tackle the Problem

1 Carry out the convolutions F ∗kC (x) for k = 0, 1, 2, . . . !

2 Use a Normal approximation

!

FS(x) ' Φ
(

x − µS

σS

)
3 Use the Normal Power II approximation

!

FS(x) ' Φ

(
− 3

γS
+

√
9

γ2
S
+ 1 +

6
γS

x − µS

σS

)

4 Use simulation:

!

FS(x) ' Fn(x) =
1
n

n

∑
j=1

I{xj ≤ x}



How We Can Tackle the Problem

1 Carry out the convolutions F ∗kC (x) for k = 0, 1, 2, . . . !

2 Use a Normal approximation !

FS(x) ' Φ
(

x − µS

σS

)
3 Use the Normal Power II approximation

!

FS(x) ' Φ

(
− 3

γS
+

√
9

γ2
S
+ 1 +

6
γS

x − µS

σS

)

4 Use simulation:

!

FS(x) ' Fn(x) =
1
n

n

∑
j=1

I{xj ≤ x}



How We Can Tackle the Problem

1 Carry out the convolutions F ∗kC (x) for k = 0, 1, 2, . . . !

2 Use a Normal approximation !

FS(x) ' Φ
(

x − µS

σS

)
3 Use the Normal Power II approximation !

FS(x) ' Φ

(
− 3

γS
+

√
9

γ2
S
+ 1 +

6
γS

x − µS

σS

)

4 Use simulation:

!

FS(x) ' Fn(x) =
1
n

n

∑
j=1

I{xj ≤ x}



How We Can Tackle the Problem

1 Carry out the convolutions F ∗kC (x) for k = 0, 1, 2, . . . !

2 Use a Normal approximation !

FS(x) ' Φ
(

x − µS

σS

)
3 Use the Normal Power II approximation !

FS(x) ' Φ

(
− 3

γS
+

√
9

γ2
S
+ 1 +

6
γS

x − µS

σS

)

4 Use simulation: !

FS(x) ' Fn(x) =
1
n

n

∑
j=1

I{xj ≤ x}



Most Commonly Used Method

5 Recursive method (Panjer algorithm):

!

fS(x) =
1

1− afC(0)

[
(p1 − (a + b)p0)fC(x)

+
min(x,m)

∑
y=1

(a + by/x)fC(y)fS(x − y)

]

with

fS(0) = PN(fC(0))



Most Commonly Used Method

5 Recursive method (Panjer algorithm): !

fS(x) =
1

1− afC(0)

[
(p1 − (a + b)p0)fC(x)

+
min(x,m)

∑
y=1

(a + by/x)fC(y)fS(x − y)

]

with

fS(0) = PN(fC(0))



Discretization of Continuous Distributions

> discretize(pgamma(x, 2, 1), from = 0, to = 5,
method = "upper")

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

x

pg
am

m
a(

x,
 2

, 1
)

●

●

●

●

●



Discretization of Continuous Distributions

> discretize(pgamma(x, 2, 1), from = 0, to = 5,
method = "lower")

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

x

pg
am

m
a(

x,
 2

, 1
)

●

●

●

●

●

●



Discretization of Continuous Distributions

> discretize(pgamma(x, 2, 1), from = 0, to = 5,
method = "rounding")

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

x

pg
am

m
a(

x,
 2

, 1
)

●

●

●

●

●



Discretization of Continuous Distributions

> discretize(pgamma(x, 2, 1), from = 0, to = 5,
method = "unbiased",
lev = levgamma(x, 2, 1))

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

x

pg
am

m
a(

x,
 2

, 1
)

●

●

●

●

●
●



Computing the Aggregate Claim Amount Distribution

aggregateDist() is the unified interface to all 5 supported
methods

Computer intensive calculations are done in C

Output is a function to compute FS(x) in any x

R methods to plot and compute related quantities



Example

Assume

N ∼ Poisson(10)

C ∼ Gamma(2, 1)

> fx <- discretize(pgamma(x, 2, 1), from = 0,
to = 22, step = 2,
method = "unbiased",
lev = levgamma(x, 2, 1))

> Fs <- aggregateDist("recursive",
model.freq = "poisson",
model.sev = fx,
lambda = 10, x.scale = 2)



Example (continued)

> plot(Fs)

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Aggregate Claim Amount Distribution

x

F
S
(x

)

Recursive method approximation



Example (continued)

> summary(Fs)

Aggregate Claim Amount Empirical CDF:
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.00000 14.00000 20.00000 19.99996 26.00000 74.00000

> knots(Fs)

[1] 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
[18] 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66
[35] 68 70 72 74

> Fs(c(10, 15, 20, 70))

[1] 0.1287553 0.2896586 0.5817149 0.9999979



Example (continued)

> mean(Fs)

[1] 19.99996

> VaR(Fs)

90% 95% 99%
30 34 42

> TVaR(Fs)

90% 95% 99%
35.99043 39.56933 46.97385



One more thing...



What If Recursions Do Not Start?

For example, in the Compound Poisson case

fS(0) = e−λ(1−fC(0))

If λ is large, fS(0) = 0 numerically
One solution:

1 divide λ by 2n

2 convolve resulting distribution n times with itself



Example

> Fsc <- aggregateDist("recursive",
model.freq = "poisson",
model.sev = fx,
lambda = 5, convolve = 1,
x.scale = 2)

> summary(Fsc)

Aggregate Claim Amount Empirical CDF:
Min. 1st Qu. Median Mean 3rd Qu.

0.00000 14.00000 20.00000 19.99997 26.00000
Max.

108.00000



Concluding Remarks

See cran.r-project.org/package=actuar for the package

Package vignettes provide complete documentation

Please cite the software in publications:
> citation(package = "actuar")

To cite actuar in publications use:

C. Dutang, V. Goulet and M. Pigeon (2008).
actuar: An R Package for Actuarial Science.
Journal of Statistical Software, vol. 25, no.
7, 1-37. URL http://www.jstatsoft.org/v25/i07
[...]

Contribute!

cran.r-project.org/package=actuar

