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Reliability mixture models

About lifetimes

The lifetime data are assumed to come from a finite mixture of m
component densities fj , j = 1, . . . ,m, where fj(·) = f (·|ξj) ∈ F a
parametric family indexed by a Euclidean parameter ξ. The lifetime
density of an observation X may be written

X ∼ g(x |θ) =
m∑
j=1

λj f (x |ξj),

where θ = (λ, ξ) = (λ1, . . . , λm, ξ1, . . . , ξm).
Latent variable representation: X = YZ where Z ∼Mult(1,λ) and
(YZ |Z = j) ∼ f (·|ξj). For references on the broad literature of mixture
models McLachlan and Peel (2000).
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Reliability mixture models

Right censored data

The censoring process is described by a random variable C with density
function q, distribution function Q and survival function Q̄. In the right
censoring setup the only available information is

T = min(X ,C ), D = I(X ≤ C ).

The n lifetime data are x = (x1, . . . , xn) iid∼ g , associated to n censoring
times c = (c1, . . . , cn) iid∼ C . The observations are thus

(t,d) = ((t1, d1), . . . , (tn, dn)) ,

where ti = min(xi , ci ) and di = I(xi ≤ ci ).
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Reliability mixture models

Complete data choice

The observed data (t,d) depends on x which comes from a finite
mixture ⇒ missing data are naturally associated to it.

To these incomplete data are associated complete data which
correspond to the situation where the component of origin
zi ∈ {1, . . . ,m} of each individual lifetime xi is known.

The complete model at the level of (X ,Z ) is given by
Pθ(Z = z) = λz and (X |Z = z) ∼ fz .

With the right censoring process the complete data are (t,d, z),
where z = (z1, . . . , zn).

Remark.

As in Chauveau (1995) the complete data can be (x, z) instead of (t,d, z).
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Reliability mixture models

Complete data pdf

Because we have:

f cθ (T = t,D = 1,Z = z) = Pθ(Z = z) fθ(D = 1,T = t|Z = z)

= λz fθ(C ≥ X ,X = t|z)

= λz Pθ(C ≥ t) fθ(X = t|z)

= λz fz(t)Q̄(t),

and similarly f cθ (t, 0, z) = λz F̄z(t)q(t), the complete data pdf is
summarized by

f c(t, d , z |θ) =
[
λz f (t|ξz)Q̄(t)

]d [
λz F̄ (t|ξz)q(t)

]1−d
.
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Some real data sets

Acute Myelogenous Leukemia survival data (Miller, 1997)

Group effect with two
groups

Sample size: 23

Censored lifetimes: 5

Variables Description
time survival or censoring

time
status censoring status

x maintenance chemotherapy
given

group scale estimation
Maintained 63.3

Nonmaintained 25.1
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Some real data sets

Lifetimes of diesel engines fans (Nelson, 1982)

Time scale (1000s of
hours)

Sample size: 70

Censored lifetimes: 12

Variables Description
time survival or censoring

time
status censoring status
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Parametric EM-algorithm

Parametric EM-algorithm: complete data = (t,d, z)

Usual missing data framework (Dempster, Laird and Rubin, 1977) ⇒
define an EM algorithm that generates a sequence (θk)k=1,2,... (with
arbitrary initial value θ0) by iteratively maximize

Q(θ|θk) = E
[
log f c(t,d,Z|θ) | t,d,θk

]
=

n∑
i=1

E
[
log f c(ti , di ,Zi |θ) | ti , di ,θk

]
.

Calculation of Q(θ|θk) requires calculation of the following posterior
probabilities

pkij := P(Zi = j |ti , di ,θk)

= λkj

(
f (ti |ξkj )∑p

`=1 λ
k
` f (ti |ξk` )

)di
(

F̄ (ti |ξkj )∑p
`=1 λ

k
` F̄ (ti |ξk` )

)1−di

. (1)
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Parametric EM-algorithm

Exponential lifetimes: complete data = (t,d, z)

EM algorithm: θk → θk+1

1 E-step: Calculate the posterior probabilities pkij as in Equation (1),
for all i = 1, . . . , n and j = 1, . . . ,m.

2 M-step: Set

λk+1
j =

1

n

n∑
i=1

pkij for j = 1, . . . ,m

ξk+1
j =

∑n
i=1 p

k
ij di∑n

i=1 p
k
ij ti

for j = 1, . . . ,m.
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Parametric EM-algorithm

Simulation example

g(x) = λ1ξ1 exp(−ξ1x) + λ2ξ2 exp(−ξ2x) x > 0,

with ξ1 = 1 −−−, ξ2 = 0.2 −−− and λ1 = 1/3 −−−.
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Parametric EM-algorithm

Application to AML data: be careful!
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Parametric EM-algorithm

Parametric EM-algorithm: complete data = (x, z)

Complete data pdf
f c(x , z) = λz fz(x).

Then

Q(θ|θk) = E
[
log f c(X,Z|θ) | t,d,θk

]
=

n∑
i=1

E
[
log f c(Xi ,Zi |θ) | ti , di ,θk

]
.

Calculation of Q(θ|θk) requires calculation of the following posterior pdf

f ki (x , j) := f (Xi = x ,Zi = j |ti , di ,θk)

= λkj

(
I(x = ti )f (ti |ξkj )∑p

`=1 λ
k
` f (ti |ξk` )

)di
(

I(x > ti )f (x |ξkj )∑p
`=1 λ

k
` F̄ (ti |ξk` )

)1−di

.
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Parametric EM-algorithm

Exponential lifetimes: complete data = (x, z)

EM algorithm: θk → θk+1

1 E-step: Calculate the posterior probabilities pkij as in Equation (1),
for all i = 1, . . . , n and j = 1, . . . ,m.

2 M-step: Set for j = 1, . . . ,m

λk+1
j =

1

n

n∑
i=1

pkij ,

ξk+1
j =

∑n
i=1 p

k
ij∑n

i=1

(
di tipkij + (1− di )

λkj (1+ξkj ti ) exp(−ξkj i )
ξkj

∑p
`=1 λ

k
` exp(−ξk` ti )

) .
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Parametric EM-algorithm

Remarks about the parametric EM algorithms

+ Whatever the choice of complete data the M-step for the λjs always
leads to explicit formula.

− Q(θ|θk) depends strongly on the choice of the underlying parametric
family F .

− Except for exponential lifetimes, explicit maximizers of Q(θ|θk) are
not reachable.

− Maximizing Q(θ|θk) may be as complicated as maximizing the full
likelihood function.
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Parametric stochastic EM-algorithm

Parametric stochastic EM approach [1/2]

Idea by Celeux and Diebolt (1985, 1986): at each iteration add a
stochastic step where the missing data are simulated according to
their posterior probability distribution given the current value θk of
the unknown parameter θ.

What should be the complete data? It is enough to chose (t,d, z).

pki = (pki1, . . . , p
k
im) is the posterior probability vector associated to

observation i . Consider Z ∼Mult(1,pki ) a multinomial distributed
random variable with parameters 1 and pki (i.e., Z ∈ {1, . . .m} with
probabilities P(Z = j) = pkij )).
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Parametric stochastic EM-algorithm

Parametric stochastic EM approach [2/2]

St-EM algorithm: θk → θk+1

1 E-step: Calculate the posterior probabilities pkij as in Equation (1),
for all i = 1, . . . , n and j = 1, . . . ,m.

2 Stochastic step: Simulate Z k
i ∼Mult(1,pki ), i = 1, . . . , n, and

define the subsets

χk
j = {i ∈ {1, . . . , n} : Z k

i = j}, j = 1, . . . ,m. (2)

3 M-step: For each component j ∈ {1, . . . ,m}

λk+1
j = Card(χk

j )/n,

and
ξk+1
j = arg max

ξ∈Ξ
Lj(ξ),

where
Lj(ξ) =

∏
i∈χk

j

(f (ti |ξ))di (F̄ (ti |ξ))1−di .
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Parametric stochastic EM-algorithm

Exponential mixture example (n = 200)

g(x) = λξ1 exp(−ξ1x) + (1− λ)ξ2 exp(−ξ2x) x > 0,

with λ = 1/3, ξ1 = 1 and ξ2 = 1/5.
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Parametric stochastic EM-algorithm

Application to engine fans (two exponentials)

0 100 300 500

0.
0

0.
2

0.
4

lambda_1 estimation

iterations

0 100 300 500

0e
+0

0
2e

−0
4

4e
−0

4

xi's estimation

iterations

Laurent Bordes () Fitting some reliability mixture models 27 August 2010 23 / 35



Parametric stochastic EM-algorithm

Application to engine fans (two Weibulls)
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Semiparametric stochastic EM-algorithm
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Semiparametric stochastic EM-algorithm

A semiparametric reliability mixture model (SRMM)

g(x |θ) = λ1f (x) + λ2ξf (ξx) x > 0,

where θ = (λ, ξ, f ) ∈ (0, 1)× R+
∗ ×F ; F is a family of pdf.

Interpretation: accelerated lifetime model for grouped data with two
groups and unobserved group label.
Example: λ1 = 0.3, ξ = 0.1 and f ∼ LN (1, 0.5).
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Semiparametric stochastic EM-algorithm

Identifiabillity of θ

Question: how to chose F to obtain[
∀x > 0 g(x |θ) = g(x |θ′)

]
⇒ θ = θ′?

Hard question. . . partial answer in Bordes, Mottelet and Vandekerkhove
(2006) and in Hunter, Wang and Hettmansperger (2007): if F is a subset
of pdf f such that x 7→ ex f (ex) is symmetric then identifiability holds!
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Semiparametric stochastic EM-algorithm

Stochastic EM algorithm for the SRMM [1/4]

Notations: f is the unknown pdf, write F̄ the reliability function and
α = f /F̄ the failure rate.
From (t,d):

F̄ is nonparametrically estimated by the Kaplan-Meier estimator,

α is nonparametrically estimated by smoothing the Nelson-Aalen
estimator.

Because λk , ξk , F̄ k and αk are estimates of λ, ξ, F̄ and α at step k we
have:

pkij := P(Zi = j |ti , di ,θk)

=

(
αk(ti )F̄

k(ti )∑p
`=1 λ

k
`α

k(ti )F̄ k(ti )

)di
(

λkj F̄
k(ti )∑p

`=1 λ
k
` F̄

k(ti )

)1−di

,

where the pdf f is estimated by f k = αk F̄ k .
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Semiparametric stochastic EM-algorithm

Stochastic EM algorithm for the SRMM [2/4]

1 Posterior probabilities calculation: for each item i ∈ {1, . . . , n}:
if di = 0 then

pki1 =
λk F̄ k(ti )

λk F̄ k(ti ) + (1− λk)F̄ k(ξkti )
,

else

pki1 =
λkαk(ti )F̄

k(ti )

λkαk(ti )F̄ k(ti ) + (1− λk)ξkαk(ξkti )F̄ k(ξkti )
.

Set pki = (pki1, 1− pki1).

2 Stochastic step: for each item i ∈ {1, . . . , n} simulate
Z k
i ∼Mult(1,pki ). Then define subsets

χk
j = {i ∈ {1, . . . , n};Z k

i = j} for j = 1, 2.
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Semiparametric stochastic EM-algorithm

Stochastic EM algorithm for the SRMM [3/4]

Facts: ξ = E(X |Z=1)
E(X |Z=2) and if Sj(s) = P(X > s|Z = j) then

E (X |Z = j) =
∫ +∞

0 Sj(s)ds.

3 Update the euclidean parameters λ and ξ:

λk+1 =
Card(χk

1)

n
,

ξk+1 =

∫ τk1
0 Ŝk

1 (s)ds∫ τk2
0 Ŝk

2 (s)ds
,

where Ŝk
j is the Kaplan-Meier estimator for the subpopulation

{(t`, d`); ` ∈ χk
j } and τkj = max`∈χk

j
t`.
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Semiparametric stochastic EM-algorithm

Stochastic EM algorithm for the SRMM [4/4]

Fact: if X comes from component two (i.e. if Z = 2), then ξX ∼ f .

4 Update the functional parameters α and F̄ : set tk = (tk1 , . . . , t
k
n ) be

the order statistic from {ti ; i ∈ χk
1} ∪ {ξkti ; i ∈ χk

2}; write
dk = (dk

1 , . . . , d
k
n ) the corresponding censoring indicators.

αk+1(s) =
n∑

i=1

1

h
K
(
s − tki

h

)
dk
i

n − i + 1
,

F̄ k+1(s) =
∏

i :tki ≤s

(
1−

dk
i

n − i + 1

)
,

where K is a kernel function and h a bandwidth.

Remark: in practice the choice of both K and h is important!
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Semiparametric stochastic EM-algorithm

Example: g(x) = 0.3f (x) + 0.7ξf (ξx), f ∼ LN (1, 0.5).
Simulated sample: n = 100 with 0% of censoring.
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Semiparametric stochastic EM-algorithm

Example (continued): n = 200 and 10% of censoring.
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Semiparametric stochastic EM-algorithm

Conclusions

All the algorithms introduced here have been/will be implemented in
the publicly available package mixtools by Benaglia, Chauveau,
Hunter and Young (2009) for the R statistical software (R
Development Core Team, 2009).

Asymptotic variances of the parametric St-EM estimators can be
derived following Nielsen (2000).

Many tuning parameters to improve. As an example, a local
bandwidth choice should improve the semiparametric St-EM
algorithm.
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Semiparametric stochastic EM-algorithm

Thanks!
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