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Outline 
  BOLD fMRI pipelines and the implicit pipeline hypothesis: is there 

a problem?  

  The NonParametric Activation and Influence Reproducibility 
reSampling (NPAIRS) framework for testing pipeline utility: 

•  prediction and reproducibiliy performance metrics 

  BOLD fMRI pipelines with Canonical Variates Analysis (CVA) 
discriminants on a principal component analysis (PCA) basis. 

  Prediction vs. reproducibility plots as data-driven, pseudo ROC 
curves: 

•  Impact of preprocessing pipeline choices. 
•  Optimal PCA dimensionality as a function of age and multiple memory tasks. 

  Conclusions 
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Testing Processing and Analysis Pipelines 
  Difficult to simulate realistic pipeline effects 

  Focus on real-data performance measures 
  All models are wrong but some are useful (Box) 

  How do we measure utility of results without knowledge of 
“true” and “false” signal response? 

  Use data-driven metrics: 
•  Reproducibility of parameter estimates, i.e., activation maps 
•  Prediction of experimental conditions 

Strother SC, et al. Hum Brain Mapp, 5:312-316, 1997. 
Strother SC, et al. Neuroimage 15:747-771, 2002. 
Kjems U, et al. Neuroimage 15:772-786, 2002. 
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Global SNR and Robust rSPM(z) 
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NPAIRS Prediction 
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Lautrup B, et al. From tomography to neural networks, (Hermann HJ, 
Wolf DE, Poeppel E, eds.) World Scientific, 137-148, 1995. 

Morch N, et al. Lecture Notes in Computer Science 1230: Information 
Processing in Medical Imaging. Springer-Verlag, pp.259-270 1997. 

Hansen LK,et al. Neuroimage, 9:534-544, 1999.  
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NPAIRS with CVA* on PCA Basis 
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NPAIRS with CVA on PCA Basis 
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X = v x (n x t) = [27843 voxels x 2992 scans] 
Column centre X by column centering each subject’s subblock 

PCA 1: STEP DOWN variable selection 
to 30% of principal components (PCs) 
X* = (n x t x 30%) x (n x t)  = [898 PCs x 2992 scans] 

Each split-half data matrix (x 50) 
 X*½ = [898 PCs x 1496 scans] 

PCA 2: STEP UP, 1:Q PC variable selection per split-half 
data matrix. 
 CVA* on 1:Q = 5:200 PCs  from svd(X*½) 

 Split-half CVA subspace matching 
  Restricted Procrustes: orthogonal rotation only 

Plot medians of resampled split-half distributions 
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Measuring Pipeline Performance 

 Use pseudo-ROC (p vs. r) measures 

   Define: relative  
   performance by  
   distance D from: 

   reproducibility  = 1 
     prediction       = 1 
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NPAIRS: Prediction vs. Reproducibility  

 16 subjects performing 
parametric, block static-force, 
task with BOLD fMRI 

•  group analysis (split-half = 8 subjs.) 
•  11-class CVA on PCA basis 
•  include/exclude preprocessing steps 
•  plot median (p,r) pairs for Q={10, 5, 

50, 100, 150, 200, 300, 500} 

 Bias-variance tradeoff for CVA 
disciminant on PC basis 

•  model complexity increases  
    (#PCs 10 →100) 
•  hook-shaped curve with optimal 

prediction & reproducibility points 

Strother SC, et al. Neuroimage 23 Sup1:S196, 2004 
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Testing Pipelines with (p, r) Plots 

1Sliding window running means.   
2Multi-Taper power spectrum 
3Wilcoxin matched–pair rank sum test (N = 16) 

    Zhang et al., Neuromage 41:4:1242, 2008 
    Zhang et al., Mag Res Med 27:264–278, 2009  
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A Multi-Task Dataset as f(Age) 
Encoding/recognition memory experiment  
•  Block design on 1.5T GE MRI (TR 2.5 s) 
•  6 language/picture tasks/subject, 1 run/task 

•  4 Encoding Tasks – 80 scans/run/task 
•  2 Recognition Tasks – 160 scans/run/task 
•  Grady et al., J. Cog. NSci, 2006 

6 Tasks per Age Group analyzed separately 
•  10 young (18-30 years) 
•  10 middle-aged (40-60) 
•  10 old (> 65 years) 

Processing & Analysis Pipelines/Task/Age Group 
•  Pre-processing: motion correction (AFNI); between-subject alignment 

(FSL); spatial smoothing (FWHM=6mm2); linear detrending 
•  Analysis Model: two-class CVA on a PCA basis: a penalised 

discriminant (PDA) 
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Prediction vs. Reproducibility Curves 

(18-30 years) 
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Maximum Reproducibility 
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Yourganov G, et al. (minor revisions, Neuroimage). 
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Practical Issues: Software & Other Uses 

   Non-standard uses of NPAIRS 
•  Infrared Dermatology Imaging 

•  Sigurdsson S, et al. IEEE Trans Biomed Eng 
51:1784-1793, 2004 

•  Selection of Nonlinear, MCMC Bayes 
Models 

•  Jacobsen D, et al., Neural Comput 20:738, 2008 

•  7T Acquisition Comparisons 
•  Barry RL, et al. BSEC 2010 ORNL Biomed. Sci. & Eng. 

Conf. Biomed Res & Analysis in Neuroscience, May 
2010 

•  Selection of Correlated Amino Acid 
Substitution Algorithms 

•  Brown CA, and Brown KS. PLoS ONE, 5(6):e10779, 
2010 

http://code.google.com/p/plsnpairs/ 
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Conclusions 
   We do not adequately understand the pipeline choices that we 

make to produce & interpret BOLD fMRI results. 
•  This is particularly true in cognitive studies as a function of age, and probably even 

more true as a funciton of disease & brain damage. 

  NPAIRS-based (p,r) curves provide a systematic, data-analysis-
model independent framework for such testing 

  (p,r) curves show BOLD fMRI results are a function of: 
•  CVA model regularization as function of PCA subspace size 
•  preprocessing pipeline choices 
•  subject age and experimental task 

  (p,r) results for CVA on a PCA basis show that: 
•  there is a hierarchical covariance structure in BOLD fMRI, perhaps reflectign 

age and task dependent brain networks 
•  the middle-aged brain (40-65? years) may be unique in ways we have yet to 

understand.  


