

faculty of behavioural and social sciences

Date 08.10.2010 |

The Generic Subspace Clustering Model

Marieke Timmerman¹ & Eva Ceulemans²

¹Heymans Institute for Psychology, University of Groningen, The Netherlands - m.e.timmerman@rug.nl

²Center for Methodology of Educational Research, Catholic University of Leuven, Belgium

Partitioning of High dimensional data

- > Problems with recovery of partition:
 - With increasing dimensionalities, sufficient sample sizes increase strongly
 - Hampered by including variables that hardly or do not reflect the partition

Partitioning of High dimensional data

- > Problems with recovery of partition:
 - With increasing dimensionalities, sufficient sample sizes increase strongly
 - Hampered by including variables that hardly or do not reflect the partition
- > Approaches to avoid recovery problems:
 - Variable importance: weighting of variables in analysis
 - Variable selection: exclude variables from analysis
 - Subspace clustering: identify clusters in some subspace(s) of the variables

Subspace clustering

> Assumption:

 Clusters are located in some subspace(s) of the variables

Subspace clustering

> Tasks:

- Identify subspace(s)
- Identify partitioning

Subspace clustering

> Models

- Stochastic (e.g., mixtures of factor analyzers)
- **Deterministic** (e.g., reduced k-means)

Partitioning of objects

$$\mathbf{x}_{i} = \mathbf{m} + \sum_{c=1}^{C} u_{ic} \left(\mathbf{b}^{c} + \mathbf{w}_{i}^{c} \right)$$

- \mathbf{x}_i (*J*×1) observed scores of object *i* on *J* variables
- \mathbf{m} (*J*×1) off-set term

 u_{ic}

 $\mathbf{b}^{c}(J \times 1)$

 $\mathbf{W}_{i}^{c}(J \times 1)$

binary cluster membership indicator: $u_{ic}=1$ if object *i* belongs to cluster *c*, and $u_{ic}=0$ otherwise centroids of cluster *c*, with $\sum_{i=1}^{I} \sum_{c=1}^{C} u_{ic} \mathbf{b}^{c} = \mathbf{0}$ within-cluster residuals of object *i* in cluster *c*, with $\sum_{i=1}^{I} \sum_{c=1}^{C} u_{ic} \mathbf{w}_{i}^{c} = \mathbf{0}$, and $\mathbf{w}_{i}^{c} = \mathbf{0}$ if $u_{ic} = 0$.

Partitioning

$$\mathbf{x}_{i} = \mathbf{m} + \sum_{c=1}^{C} u_{ic} \left(\mathbf{b}^{c} + \mathbf{w}_{i}^{c} \right)$$

Generic subspace clustering model

$$\mathbf{x}_{i} = \mathbf{m} + \sum_{c=1}^{C} u_{ic} \left(\mathbf{A}_{\mathbf{b}} \mathbf{f}_{\mathbf{b}}^{c} + \mathbf{A}_{\mathbf{w}}^{c} \mathbf{f}_{\mathbf{w},i}^{c} \right) + \mathbf{e}_{i}^{c}$$

- $\mathbf{A}_{\mathbf{b}}$ (*J*×*Q*_{*b*}) between-loading matrix
- $\mathbf{f}_{\mathbf{b}}^{c}$ ($Q_{b} \times 1$) between-component scores of cluster c
- $\mathbf{A}_{\mathbf{w}}^{c}(J \times Q_{w}^{c})$ within-loading matrix of cluster c
- $\mathbf{f}_{\mathbf{w},i}^{c}(Q_{w}^{c} \times 1)$ within-component scores of object *i* in cluster *c*
- \mathbf{e}_i^c (*J*×1) error of object *i*

Generic subspace clustering model

$$\mathbf{x}_{i} = \mathbf{m} + \sum_{c=1}^{C} u_{ic} \left(\mathbf{A}_{\mathbf{b}} \mathbf{f}_{\mathbf{b}}^{c} + \mathbf{A}_{\mathbf{w}}^{c} \mathbf{f}_{\mathbf{w},i}^{c} \right) + \mathbf{e}_{i}^{c}$$

Constraints:

 $\sum_{i=1}^{I} \sum_{c=1}^{C} u_{ic} \mathbf{f}_{\mathbf{b}}^{c} = \mathbf{0} \qquad \rightarrow \quad \mathbf{A}_{\mathbf{b}} \mathbf{f}_{\mathbf{b}}^{c} : \text{ model for between-part}$ $\sum_{i=1}^{I} \sum_{c=1}^{C} u_{ic} \mathbf{f}_{\mathbf{w},i}^{c} = \mathbf{0} \qquad \rightarrow \quad \mathbf{A}_{\mathbf{w}}^{c} \mathbf{f}_{\mathbf{w},i}^{c} : \text{ model for within-part}$ with $\mathbf{f}_{\mathbf{w},i}^{c} = \mathbf{0}$ if $u_{ic} = \mathbf{0}$

 $\mathbf{A_b}' \mathbf{A_b} = \mathbf{I}$ and $\mathbf{A_W}^C \cdot \mathbf{A_W}^C = \mathbf{I}$

Generic subspace clustering model

$$\mathbf{x}_{i} = \mathbf{m} + \sum_{c=1}^{C} u_{ic} \left(\mathbf{A}_{\mathbf{b}} \mathbf{f}_{\mathbf{b}}^{c} + \mathbf{A}_{\mathbf{w}}^{c} \mathbf{f}_{\mathbf{w},i}^{c} \right) + \mathbf{e}_{i}^{c}$$

- > Between-part:
 - in full space $(Q_b=J)$, or in any subspace
- > For each cluster *c*, within-part:
 - in full space $(Q_w^c = J)$, or in any subspace

Generic subspace clustering model illustrated

$$\mathbf{x}_{i} = \mathbf{m} + \sum_{c=1}^{C} u_{ic} \left(\mathbf{A}_{\mathbf{b}} \mathbf{f}_{\mathbf{b}}^{c} + \mathbf{A}_{\mathbf{w}}^{c} \mathbf{f}_{\mathbf{w},i}^{c} \right) + \mathbf{e}_{i}^{c}$$

- > C clusters?
 - 1 between subspace
 - C within subspaces

Generic subspace clustering model illustrated

2 observed variables, 2 clusters

Generic subspace clustering model illustrated

subspace between =
subspace within cluster 1 =
subspace within cluster 2

Generic subspace clustering model illustrated

subspace between =
subspace within cluster 1 =
subspace within cluster 2

subspace between ≠ {subspace within cluster 1 = subspace within cluster 2}

Generic subspace clustering model illustrated

subspace between =
subspace within cluster 1 =
subspace within cluster 2

subspace between ≠ {subspace within cluster 1 = subspace within cluster 2}

Generic subspace clustering model illustrated

subspace between =
subspace within cluster 1 =
subspace within cluster 2

subspace between ≠ {subspace within cluster 1 = subspace within cluster 2} {subspace between = subspace within cluster 2} ≠ subspace within cluster 1

Generic subspace clustering model illustrated

subspace between =
subspace within cluster 1 =
subspace within cluster 2

subspace between ≠
{subspace within cluster 1 =
subspace within cluster 2}

{subspace between = subspace within cluster 2} ≠ subspace within cluster 1

Generic subspace clustering model

$$\mathbf{x}_{i} = \mathbf{m} + \sum_{c=1}^{C} u_{ic} \left(\mathbf{A}_{\mathbf{b}} \mathbf{f}_{\mathbf{b}}^{c} + \mathbf{A}_{\mathbf{w}}^{c} \mathbf{f}_{\mathbf{w},i}^{c} \right) + \mathbf{e}_{i}^{c}$$

- Very general model
- Various previously proposed models as special cases:
 - I. between-part in full space / subspace; within-parts of clusters in subspace / zero
 - II. Within-part in subspace(s),with (partial) equalities across clusters

Special cases (I)

- > between-part in full space or subspace
- > within-parts of clusters in subspace or zero

Model	k-means clustering	Projection Pursuit clustering = Reduced k-means	PCA-based clustering with class-specific hyperplanes
between- part	full space	subspace	full space
within-part	zero	zero	for each cluster in a subspace, dimension equal across clusters
Author(s), year	MacQueen, 1967	Bock, 1987; De Soete & Carroll, 1994	Bock, 1987

Illustration of Special cases (I)

k-means

between: full space within: zero

faculty of behavioural and social sciences

Date 08.10.2010 |

k-means

Reduced k-means

between: full space within: zero

between: subspace within: zero

university of groningen

faculty of behavioural and social sciences

Date 08.10.2010 |

k-means

between: full space within: zero

Reduced k-means

between: subspace within: zero

PCA-based clustering with class-specific hyperplanes

between: full space within: subspace per cluster

Special cases (II)

> Model for within-part of object *i* in cluster *c*:

 > Within-parts in subspaces?
 Models for within-parts may be (partly) equal to each other

Special cases (II)

- Within-parts in subspace(s)?
 Models for within-parts may be (partly) equal to each other
- > Similarities across clusters in
 - subspace
 - (and) shape
 - (and) size

Similarities across clusters in subspace

 PCA-clustering with common and classspecific dimensions (Bock, 1987)

$$\mathbf{A}_{\mathbf{W}}^{c} = [\mathbf{A}_{\mathbf{W}} \mid \mathbf{A}_{\mathbf{W}}^{c^*}]$$

with

- $\mathbf{A}_{\mathbf{w}}$ the common loading matrix
- $\mathbf{A}_{\mathbf{w}}^{\mathit{c}^{*}}$ the class-specific loading matrix

Similarities across clusters in subspace, size and shape

- > Borrowed from stochastic models (Banfield & Raftery, 1993):
 - similarity in subspace
 - via constraints on $A_w^{C^*} = A_w$
 - similarity in size and/or shape
 - via constraints on variances of within-componentscores $(\mathbf{f}_{\mathbf{w},i}^c)$ per cluster

Generic subspace clustering model

$$\mathbf{x}_{i} = \mathbf{m} + \sum_{c=1}^{C} u_{ic} \left(\mathbf{A}_{\mathbf{b}} \mathbf{f}_{\mathbf{b}}^{c} + \mathbf{A}_{\mathbf{w}}^{c} \mathbf{f}_{\mathbf{w},i}^{c} \right) + \mathbf{e}_{i}^{c}$$

- Well-examined deterministic models:
 - k-means clustering (no subspace at all)
 - reduced k-means (subspace for between-part)

Generic subspace clustering model

$$\mathbf{x}_{i} = \mathbf{m} + \sum_{c=1}^{C} u_{ic} \left(\mathbf{A}_{\mathbf{b}} \mathbf{f}_{\mathbf{b}}^{c} + \mathbf{A}_{\mathbf{w}}^{c} \mathbf{f}_{\mathbf{w},i}^{c} \right) + \mathbf{e}_{i}^{c}$$

- Well-examined deterministic models:
 - k-means clustering (no subspace at all)
 - reduced k-means (subspace for between-part)
- Hardly examined so far:
 - models with subspaces for the within-parts

Future of Generic subspace clustering model

- > Elaborate models with subspaces for the within-parts
 - fitting procedures
 - obtain insight into additional value of those constraints

> Note:

Different models may cover different properties of clusters

> Note:

Different models may cover different properties of clusters

- Example:
 - cluster centroids optimally separated, or
 - clusters of equal subspace, size and shape

Future of Generic subspace clustering model

>Key issue: Model selection