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Ensemble Techniques

◮ Aim at improving the predictive performance of fitting
techniques by

by constructing multiple function predictions from the
data by means of a “weak” base procedure
and then using a convex combination of them for final
aggregated prediction

◮ Random forest, boosting and bagging most famous
ensemble techniques

◮ Originally designed for classification

◮ Gradient descent approximation in function space
(Breiman, 1998, 1999) is an easy tool to use boosting in
regression
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Usual Regression

Let Y ∈ R be a random variable and x ∈ R
p a vector of

predictor values

Let f be a regression function such that Ŷ = f (x).

Let L(Y , f (x)) be the loss function that measures
goodness of fit. For example L(Y , f (x)) = (Y − F (x))2,
known as L2-loss.

The regression function f is found from minimizing the
the expected loss

f (x) = argmin
F

EY |x(L(Y , F (x)) | x = x))
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Boosting

Boosting attemts to find a regression function f of the
form

f (x) =
m
∑

i=0

fm(x)

by minimizing expected loss using gradient descent
techniques, i.e. following the steepest descent with
respect to f of the loss function in a forward stagewise
manner.

fm are simple functions of x (“base learners”).

Choice of the loss function and the type of base learners
yield a variety of different boosted regression models.
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Gradient Descent

Start with initial function f0(x).

In step m ≥ 1, the current argument fm−1 is changed into
the direction of the negative gradient of expected loss

Um(x) = −
∂

∂f
EY |x(L(Y , F (x)) | x = x)) |f=fm−1(x) =

= EY |x(−∇L(y , f )) |f=fm−1(x)

such that fm = fm−1 + ν Um, where ∇L is the gradient of
the loss function with respect to f , and ν is the shrinkage
parameter.
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Sample Version of Gradient Descent

f0 is traditionally chosen as f0 = argminc
∑N

i=1 L(yi , c).

The conditional mean of the negative gradient is found
from regression:

− The negative gradient of the loss function,
Vi = −∇L(yi , fm−1(xi )), is evaluated at the given
sample.

− This “pseudo-response” is fitted to the predictors xi by
the “base learner” um to get the direction
Ûm(x) = um(x).

− The regression function then becomes fm = fm−1 + ν um.
− The process is iterated until m = M.
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Tuning Parameters

M can be determined by cross validation.

ν is of minor importance unless it is not too large.
Typically, ν = 0.1. Smaller values of ν favor better test
error but need a larger number of iterations.

As “base learner” simple models such as regression tree
or componentwise linear least squares (CLLS) are used.
CLLS are very fast in calculation, wheras tree can cope
with nonlinear structures.
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Count Data Regression

Common models: Poisson, negative binomial

Alternative model: The generalised Poisson distribution
(Consul and Jain (1970); Consul (1979))

To address overdispersion caused by an excess of zeros,
zero-inflated models were introduced (Johnson and Kotz,
1969; Mullahy, 1986; Lambert, 1992).

− Derived from mixing a count distribution and a point
mass at zero.

− Problem: different sources of zeros impede interpretation

Alternative model: hurdle models consist of a hurdle
component to account for zeros, and a zero-trunctated
count component to account for non-zeros. The
zero-truncated component follows any zero-truncated
count distribution.
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Generalized Poisson Distribution of Y

Probability density function, p(y |µ, φ), with mean µ, and
dispersion parameter φ

p(y |µ, φ) =
µW y−1

y !
φ−y e

−W
φ

where W = µ+ (φ− 1) y and µ > 0.

Assume φ > 1. Otherwise φ must be restricted to
guarantee that p(y |µ, φ) ≥ 0.

φ > 1 indicates overdispersion, whereas φ < 1 indicates
underdispersion.

For φ = 1 the GP reduces to the Poisson distribution

Mean and variance of the GP are:

E(Z ) = µ Var(Y ) = φ2 µ
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Generalized Poisson Hurdle Distribution (1)

Two-component model: a hurdle component to model
zeros versus nonzeros, and a zero-trunctated count
component to account for the nonzeros.

The hurdle at zero is assumed to be a Bernoulli variable
B(ω, 1) where ω = P(Y0 = 0).

The zero-truncated component YT ∼ GPT (µ, φ, p) with
probability density function

pT (y |µ, φ) =
p(y |µ, φ)

p(0 |µ, φ)
=

p(y |µ, φ)

1− e−µ/φ
.

where p(y |µ, φ) is the GP probability density function
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Generalized Poisson Hurdle Distribution (2)

Probability density function of a generalised Poisson
hurdle distribution (GPH):

pH(y |µ, φ, ω) = 1(y==0) · ω + 1(y>0) · (1− ω)
p(y |µ, φ)

1− e−µ/φ
,

Mean and variance of GPH are

E(Z ) =
(1− ω)µ

1− e−µ/φ

Var(Z ) =
φ2 µ (1− ω)

1− e−µ/φ
+

µ2 (1− ω)(ω − e−µ/φ)

(1− e−µ/φ)2
.
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Regression Model

Yi
iid
∼ GPH(µi , φi , ωi).

log(µi) = g(xi)

log(φi − 1) = h(xi)

log
(

ωi

1−ωi

)

= l(xi)

where xi = (xi1, . . . , xip) is a vector of predictor values.
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Loss Function

The loglikelihood function serves as a loss function for
determining the predictors g , h, and l :

L(Y , g , h, l) =

= −1(Y=0)

(

− log
(

1 + e−l
))

− 1(Y>0)

(

− log(1 + e l) + g+

+(Y − 1) log(eg + eh Y )− log(Y !)− Y log(1 + eh)

−
eg + eh Y

1 + eh
− log

(

1− exp

(

−
eg

1 + eh

)))
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Boosting Generalized Poisson Hurdle Model (1)

Common boosting methods are based on a loss function
that involves only one ensemble. Thus, they can only be
applied when a regression function is fit only for one
parameter.

The GPH model requires estimating a regression function
on all three parameters.

When using ensemble techniques, three ensembles must
be fit simultaneously.

The loss function of the GPH model depends on three
inter-related regression functions, g , h, and l . Thus, the
gradient of the GPH boost is a three components vector.
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Boosting Generalized Poisson Hurdle Model (2)

At any step m > 0 the pseudo-responses, (V g
i ,V

h
i ,V

l
i ), of the

three ensembles, are obtained as the negative gradient of the
loss function evaluated at the current values
(gm−1, hm−1, lm−1) of g , h and l

(V g
i ,V

h
i ,V

w
i ) =

(

−
∂L

∂g
, −

∂L

∂h
, −

∂L

∂w

) ∣

∣

∣

∣

(yi ,gm−1,hm−1,wm−1)

where

−
∂L

∂g
= 1(y>0)



1 +
(y − 1)eg

eg + y eh
−

eg

1 + eh
−

exp
(

− eg

1+eh

)

eg

1+eh

1− exp
(

− eg

1+eh

)
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Boosting Generalized Poisson Hurdle Model (3)

−
∂L

∂h
= 1(y>0)

(

y(y − 1)eh

eg + yeh
−

yeh

1 + eh
−

eh(y − eg )

(1 + eh)2
+

+
exp

(

− eg

1+eh

)

eg+h

(1+eh)2

1− exp
(

− eg

1+eh

)





−
∂L

∂l
= 1(y=0)

(

1

1 + e l

)

− 1(y>0)

(

1

1 + e−l

)
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Multivariate Componentwise Least Squares (1)

The three pseudo-responses are estimated by multivariate
componentwise least squares (MCLLS).

The methods assumes that all three ensemble have the
same predictors.

In each boosting step only one predictor variable is
selected in the sense of Wilks’ lambda.

− Let X(j) be the j-column of the design matrix, and let V
be the matrix with ith row (V g

i ,V
h
i ,V

l
i ).

− The “base learner” has the form um(x) = β(s) x (s),
where

β(j) =
(

β
(s)
g , β

(s)
h , β

(s)
l

)

= ||X(j)||−2(X(j))t V
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Multivariate Componentwise Least Squares (2)

s = arg min
1≤j≤p

det(VtV − (β(j))t (X(j))tV)

det(VtV − nV
t
V)

where V is the mean gradient, and n stands for the sample
size. This yields the coefficient β

(s)
g for the µ-ensemble g , β

(s)
h

for the φ ensemble h, and β
(l)
l for the ω ensemble l . Then the

ensembles are updated as

gm(x) = gm−1(x) + νβ(s)
g x (sm) ,

hm(x) = hm−1(x) + νβ
(s)
h x (sm) ,

wm(x) = wm−1(x) + νβ
(s)
l x (sm) .
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Initial Values (1)

After M iterations the parameters take the form

µ̂i = egm(xi ) φ̂i = 1 + ehm(xi ) ω̂i =
e lm(xi )

1 + e lm(xi )

Initial values g0, h0 and w0 are obtained from a nonlinear
system of equations:
− Mean and variance of a zero-truncated GP are,

E(YT ) = µT =
µ

1− e
−µ

φ

Var(YT ) = σ2
T =

µ (µ+ φ2)

1− e
−µ

φ

.

− Using moment estimators

µ̂T =
1

nT

∑

yi>0

yi σ̂2
T =

1

nT − 1

∑

yi>0

(yi − µ̂T )
2

where nT is the number of nonzero observations. Let n0
be the number of zeros and n = n0 + nT the total
sample size.
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Initial Values (2)

Estimations for the parameters µ and φ are then obtained
from the nonlinear systems of equations with respect to µ̂

and φ̂:

µ̂T =
µ̂

1− e
− µ̂

φ̂

σ̂2
T =

µ̂
(

φ̂
(

1− e
− µ̂

φ̂

)

− µ̂ e
− µ̂

φ̂

)

(

1− e
− µ̂

φ̂

)2

Furthermore,

ω̂0 =
n0

n

Finally, g0(x) = log(µ̂), h0(x) = log(φ̂− 1), and
l(x) = log(ω̂)− log(1− ω̂).
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Empirical Analysis

Two real datasets:

Data from the US National Medical Expenditure Servey
1987/88 which was used by Deb and Trivedi (1997) to
invesigate the number of physician/non-physician office
and hospital outpatient visits of individuals aged 66 and
over, who are covered by a particular public insurance
program.

Data from the German Socioeconomic Panel which was
used in Riphahn et al (2003) to study the number of
doctor visits in the last three months and the number of
hospital visits in the last year.
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Comparison

Compared models

GP hurdle boost (GPH)

Poisson hurdle (P)

negative binomial (nB)

negative binomial hurdle (nBH)

Characteristics:

Loglikelihood (LogLik) and loglikelihood per sample (Avg
LogLik) for training (train) and testing (test)

Standard deviation of the loglikelihood per sample unit
(Std Avg LogLik) for training and testing

Root mean squared error of the number of zeros (RMSE
zeros) is given for training and testing

Vuong’s test
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Results (1)

US National Medical Expenditure Servey (M=9308)

GPH P nB nBH

LogLik train -9776 -12897 -9735 -9668
LogLik test -2452 -3250 -2437 -2423

Avg LogLik train -2.7736 -3.6590 -2.7619 -2.7428
Avg LogLik test -2.7823 -3.6883 -2.7657 -2.7502

Std Avg LogLik train 0.0027 0.0431 0.0056 0.0049
Std Avg LogLik test 0.0121 0.1776 0.0225 0.0200

RMSE zeros train 44.5515 0.0000 60.3376 0.0000
RMSE zeros test 12.5356 6.2778 16.0971 6.2778
Vuong test value -1.3178 -13.3882∗ -6.0281∗

model verus nBH
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Results (2)

German Socioeconomic Panel (M = 1433)

GPH P nB nBH

LogLik train -46172.13 -60303.21 -46321.25 -45854.36
LogLik test -11551.54 -15125.44 -11591.15 -11478.57

Avg LogLik train -2.1121 -2.7585 -2.1189 -2.0976
Avg LogLik test -2.1137 -2.7676 -2.1209 -2.1003

Std Avg LogLik train 0.0028 0.0201 0.0033 0.0031
Std Avg LogLik test 0.0111 0.0810 0.0132 0.0127

RMSE zeros train 420.1186 0.0000 316.1610 0.0000
RMSE zeros test 105.9726 9.9499 79.8624 9.9499
Vuong test value -8.0397∗ -25.8170∗ -16.8593∗

model verus nBH
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