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• Clusters and scan statistics : simple example

• Simulation methods
 Monte-Carlo

 Petri nets 

• Markov approach
 Simplified Markov chain  - one scan window

 Simplified Markov chain - double scan window

 Complete Markov chain

• Simulation results and comparison

• Conclusions
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Scan statistics allow to evaluate or approximer probability of occurence of 

such a “cluster” of events. 

August 23 

Flight 204 of Trans

Crached approaching  

Amazonie

Unreliable series, isn’t it, BUT…

August 2nd

Flight 358  of Air France 

went out of runways  

during landing in Toronto

August 6

Flight 1153 of Tuninter 

landed on see close to 

Palermo

August 14

Flight 522 of Hélios 

crashed into a 

mountain close to 

Athens

August 16 

Flight 1153 lof West 

Caribbean

Crached in Venezuela
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Goal : calculate probability that we will observe a cluster of k or more events 

in a scanning windows of length w moving  during a fixed period of length T.

 Any window of length w can constain a cluster

Windows overlap

Problems
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Two probability models :

• Bernoulli 

• Poisson )λP(

)Be( p

Example:













day 10in  events 3  :  (10,3)k)(w, 

mean)(on year per  events 8  tocorrespond por  λ

days 365 i.e. year, one T

Solutions

• Monte Carlo simulations
• direct (implemented using a specific algorithm)

• supported by Petri nets

• Markov chains
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Direct Monte-Carlo simulation

• Dates of accidents are generated along the considered distribuion to cover given period 
of observation [0,T[

• List of  dates is scanned until the cluster is observed

• Counter of clusters - Nb_Cluster – is incremented by 1

Tε...εε0 S21 

We estimate unknown parameter 

using the quantity

N

Nb_Cluster

N est is number of repetitions of 

the simulation.
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Use of Petri nets stimulating Monte Carlo simulation 

• Counting processes (simple counting medium)

• 2 places and 2 transitions

• Initialization

 place 1 is set to one

 Nb_Cluster = 0 

• Variables εi (i =1,...,k) indicates dates of k consecutive 
accidents 

• Index I allows to calculate continuously  time elapsed 
between eventsl i and (i+k-1)

• Nb_Cluster passe à 1 when k accidents appear within a 
window of lentgh w

Charles University Prague, Thales Bordeaux, University Bordeaux 1
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MARKOV MODELS

Scanning observation period

• Xi… random variable denoting number of events 

in interval  [i-1,i[ 

• N(u,w)… random variable counting number of 

events in  window [u,u+w[

• p probability that an event will appear in a 

subinterval of the length equal t o1 

Xi
N(u,w)

0 T

1 2 3 i-1 i u u+w

Notation

Bernoulli model







p-1qy  probabilitwith 0

py  probabilitwith 1
 iX
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Xu+w+1 

Xu+1 

From window N(u,w) à to window N(u+1,w)

1wu1u XX)w,u(N)w,1u(N  

dependent

independent

FIRST MARKOV MODEL

w

n
)n)w,u(N1X(P 1u  w

n
1)n)w,u(N0X(P 1u 

“Lost” of random 

variable Xu+1

“Arrival” of  random 

variable Xu+w+1
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Probability of one 

cluster of 3 events or 

more in a window of 

size w=10

States:

E0, E1, E2 : 0, 1 or 2 events in current window

E3 : 3 events or more in current window

Markov chain

FIRST MARKOV MODEL
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FIRST MARKOV MODEL
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Probability  to find cluster consisting of k=3 events or more in window of size 

w=10 scanning the  period of length T=365 is given by product

MNX N=356

FIRST MARKOV MODEL



12

Problem :  Model allows the “ways” which cannot be realized in practice

E0 E0E1

E0 E1E1

SECOND MARKOV MODEL
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Division of the scanning window into two sub-windows

E0 E’
1E1

SECOND MARKOV  MODEL
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Transition matrix is matrix of size D×D avec D=k(k-1)+1

State is:

either pair (i,j) if i+j<k

absorbing state if i+j=k

Transition probabilities and vector of initial probabilities are calculated analogously as before 
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Xi

0 T

1 2 3 i-1 i u u+w

“Complete” model

 State is:

either w-uplet (X1, X2,…, Xw) if X1 + X2 +…+ Xw <k

Or absorbing A if X1 + X2 +…+ Xw =k

  AkX and 0,1X)X,...,X,(XE
w

1i

iiw21









 


 Space of states is

With dimension       1...1 w

1k

w

2

w

1  

Notation: state (i1,i2,…,im) if i1=i2=…=im=1 and il=0 otherwise

THIRD  MARKOV MODEL
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Transition matrix

Transition of state (i,j) to state

(i-1,j-1) with probability q:

i j

i-1 j-1

i j

Transition of state  (i,j) to absorbing 

state with probability p:

i-1 j-1

THIRD MARKOV MODEL
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Vector  of initial probabilities
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THIRD MARKOV MODEL

Probability to observe a cluster of k=3 events or more in a window of size 

w=10 scanning the period of length T=365 is given by a product

MNX with N=356
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Discretization Day Hour

Method Bernoulli Poisson Bernoulli Poisson

Monte Carlo direct 0.1250 0.1329 0.1310 0.1329

RdP, Monte Carlo 0.1225 0.1317 0.1251 0.1317

Simple Markov 
model

0.0991 0.1176 0.1274 0.1280

Double scanning 
window

0.1014 NaN 0.1296 NaN

Complete  Markov 
model

0.1028 0.1217 NaN NaN

Results
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Conclusions

Results obtained using Bernoulli model converge to those using Poisson models if 

discretization step converges to zero 

As far as we know there does not exist exact method enabling to solve in « short » 

time the problem to estimate the probability of existence of a cluster of events.

… Our method allow to find an approximation of this probability in acceptable

time.Obtained results are almost identical provided the discretization is fine enough.

Proposed method are different and range from simulations and combinatorics to the

use of Markov chains.
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Assume n linearly (serially) arranged components

each component is associated with a failure indicator Ii

MODEL I

k-within-r-out-of-n system

system failed if exist window of size r (covering r objects) with at

least k failed components

MODEL II

k-out-of-n   r=n

MODEL III

consecutive k-out-of-n   r=k
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Unreability of  consecutive  k-out-of-n  system
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Unreability of   k-out-of-n   system

Unreability of  l-to-h-out-of-n  system
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ii QP , Reliability and unreability of  k-th component
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Implementation

Using binary decision diagrams of  Bryant, i.e. Shannon like decomposition 

of Boolean formulas

Provided all components have the same reliability, for  k-within-r-out-of-n   

system the complexity is O(2^h.k.n), 0<=h<=r, so that for small r (tenths) 

we are able to calculate exact results  thousands of components on 

“ordinary” PC computer

What can we get

MODEL I

k-within-r-out-of-n system

system failed if exist window of size r (covering r objects) with at

least k failed components


