

Use of Monte Carlo when estimating reliability of complex systems COMPSTAT 2010 : August 27, 2010

Jaromir Antoch, Yves Dutuit, Julie Berthon Charles University Prague, Thales Bordeaux, University Bordeaux 1

- Clusters and scan statistics : simple example
- Simulation methods
 - Monte-Carlo
 - Petri nets
- Markov approach
 - Simplified Markov chain one scan window
 - Simplified Markov chain double scan window
 - Complete Markov chain
- Simulation results and comparison
- Conclusions

1

2 Charles University Prague, Thales Bordeaux, University Bordeaux 1

THALES

Goal : calculate **probability that we will observe** a **cluster of** k or more events in a scanning windows of length **w** moving during **a fixed period of length T**.

Any window of length w can constain a cluster
Windows overlap

3 Charles University Prague, Thales Bordeaux, University Bordeaux 1

Example:

T =one year, i.e. 365 days

 λ or p correspond to 8 events per year (on mean)

(w,k) = (10,3) : 3 events in 10 day

Solutions

- Monte Carlo simulations
 - direct (implemented using a specific algorithm)
 - supported by Petri nets
- Markov chains

Direct Monte-Carlo simulation

• Dates of accidents are generated along the considered distribuion to cover given period of observation [0,T[

 $0\!<\!\epsilon_{_1}\!<\!\epsilon_{_2}\!<\!...\!<\!\epsilon_{_S}\!\leq\!T$

- List of dates is scanned until the cluster is observed
- Counter of clusters Nb_Cluster is incremented by 1

We estimate unknown parameter using the quantity

Nb_Cluster

N est is number of repetitions of the simulation.

	w	10 Number of years with a cluster							11	6							
2	р	8/365	?			Numb	er of	cluste	rs		12	2	?				
}	k	3	?			Mean	numł	per of	accide	ents p	er yea	ar	8,0)9			
ŀ	Т	365	2														
;	n°simu	CPT	CPT_ACC	CPT_YES	•	-	•	•	•	•	•	•	•	•	•	•	•
54	simu_749	0	8	0	102	109	161	177	205	228	233	300	_		_	_	
5	simu_750	0	9	0	11	66	71	81	98	199	226	256	319				
56	simu_751	0	7	0	28	31	129	132	160	191	237						
57	simu_752	2	10	1	50	54	55	57	62	91	197	265	282	319			
58	simu_753	0	8	0	48	60	150	175	208	229	278	348					
59	simu_754	0	5	0	227	248	295	312	313								
60	simu_755	0	5	0	7	59	75	307	311								
51		0	8	0	76	95	104	224	272	288	293	327					
<u>52</u>	simu_757	0	8	0	92	126	139	170	214	226	230	346					
	simu_758	0	4	0	71	94	173	303									
54	simu_759	1	11	1	30	55	128	181	210	288	310	314	316	333	348		
5	simu_760	0	9	0	68	77	201	228	255	305	317	325	339				
	simu_761	0	6	0	14	171	214	242	249	257							
57	simu_762	0	3	0	37	208	271										
	simu_763	0	8	0	52	57	87	167	177	197	223	322					
<u>;9</u>	simu_764	0	5	0	166	174	334	340	347								
0	simu_765	1	9	1	38	157	166	175	176	180	247	285	310				

Use of Petri nets stimulating Monte Carlo simulation

- Counting processes (simple counting medium)
- 2 places and 2 transitions
- Initialization
 - place 1 is set to one
 - > Nb_Cluster = 0
- Variables ε_i (i =1,...,k) indicates dates of k consecutive accidents
- Index I allows to calculate continuously time elapsed between eventsl i and (i+k-1)
- Nb_Cluster passe à 1 when k accidents appear within a window of lentgh w

HAL

$$\bigcirc$$

Scanning observation period

7 Charles University Prague, Thales Bordeaux, University Bordeaux 1

HALES

8 Charles University Prague, Thales Bordeaux, University Bordeaux 1

<u>States:</u>

 $E_0, E_1, E_2 : 0, 1 \text{ or } 2 \text{ events in current window}$ $E_3 : 3 \text{ events or more in current window}$

<u>Markov chain</u>

Probability of one cluster of 3 events or more in a window of size w=10

THALES

Oharles University Prague, Thales Bordeaux, University Bordeaux 1

Transition matrix

Vector of initial probabilities

Number of iterations

THALES

Oharles University Prague, Thales Bordeaux, University Bordeaux 1

Problem : Model allows the "ways" which cannot be realized in practice

Division of the scanning window into two sub-windows

State is: State is: *either pair (i,j) if i+j<k absorbing state if i+j=k*

Transition matrix is matrix of size D×D avec D=k(k-1)+1

Transition probabilities and vector of initial probabilities are calculated analogously as before

$$\mathbf{M} = \begin{bmatrix} \mathbf{q} & \mathbf{0} & \mathbf{q} \cdot \left(\frac{2}{w}\right) & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{p} & \mathbf{q} \cdot \left(1 - \frac{2}{w}\right) & \mathbf{p} \cdot \left(\frac{2}{w}\right) & \mathbf{0} & \mathbf{q} \left(\frac{2}{w}\right) \cdot \left(1 - \frac{2}{w}\right) & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{q} \cdot \left(\frac{2}{w}\right) & \mathbf{q} \cdot \left(1 - \frac{2}{w}\right) & \mathbf{0} & \mathbf{q} \cdot \left(\frac{2}{w}\right) \cdot \left(\frac{2}{w}\right) & \mathbf{q} \cdot \left(\frac{4}{w}\right) & \mathbf{0} \\ \mathbf{0} & \mathbf{p} \cdot \left(1 - \frac{2}{w}\right) & \mathbf{0} & \mathbf{q} \cdot \left(1 - \frac{4}{w}\right) & \mathbf{p} \cdot \left(\frac{2}{w}\right) \cdot \left(1 - \frac{2}{w}\right) & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{q} \cdot \left(\frac{2}{w}\right) & \mathbf{p} \cdot \left(1 - \frac{2}{w}\right) & \mathbf{q} \cdot \left(\frac{4}{w}\right) & \mathbf{p} \cdot \left(\frac{2}{w}\right) \cdot \left(1 - \frac{2}{w}\right) \cdot \left(1 - \frac{2}{w}\right) & \mathbf{p} \cdot \left(\frac{4}{w}\right) & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{q} \cdot \left(\frac{2}{w}\right) \cdot \left(1 - \frac{2}{w}\right) \cdot \left(1 - \frac{2}{w}\right) & \mathbf{p} \cdot \left(\frac{4}{w}\right) & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{p} & \mathbf{p} \cdot \left(1 - \frac{2}{w}\right) & \mathbf{q} \cdot \left(1 - \frac{4}{w}\right) & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{p} & \mathbf{p} \cdot \left(1 - \frac{2}{w}\right) & \mathbf{p} \cdot \left(1 - \frac{4}{w}\right) & \mathbf{1} \end{bmatrix}$$

$$\mathbf{X} = \begin{bmatrix} \mathbf{b} \left(0, \frac{\mathbf{w}}{2}, \mathbf{p} \right)^2 \\ \mathbf{b} \left(0, \frac{\mathbf{w}}{2}, \mathbf{p} \right) \mathbf{b} \left(1, \frac{\mathbf{w}}{2}, \mathbf{p} \right) \\ \mathbf{b} \left(1, \frac{\mathbf{w}}{2}, \mathbf{p} \right) \mathbf{b} \left(0, \frac{\mathbf{w}}{2}, \mathbf{p} \right) \\ \mathbf{b} \left(0, \frac{\mathbf{w}}{2}, \mathbf{p} \right) \mathbf{b} \left(2, \frac{\mathbf{w}}{2}, \mathbf{p} \right) \\ \mathbf{b} \left(1, \frac{\mathbf{w}}{2}, \mathbf{p} \right) \mathbf{b} \left(1, \frac{\mathbf{w}}{2}, \mathbf{p} \right) \\ \mathbf{b} \left(2, \frac{\mathbf{w}}{2}, \mathbf{p} \right) \mathbf{b} \left(0, \frac{\mathbf{w}}{2}, \mathbf{p} \right) \\ \mathbf{b} \left(2, \frac{\mathbf{w}}{2}, \mathbf{p} \right) \mathbf{b} \left(0, \frac{\mathbf{w}}{2}, \mathbf{p} \right) \\ \mathbf{b} \left(2, \mathbf{w}, \mathbf{p} \right) \mathbf{b} \left(0, \frac{\mathbf{w}}{2}, \mathbf{p} \right) \end{bmatrix}$$

"Complete" model

 $\succ \text{ State is: } \left\{ \begin{array}{c} \text{either w-uplet } (X_1, X_2, \dots, X_w) \text{ if } X_1 + X_2 + \dots + X_w < k \\ \text{Or absorbing A if } X_1 + X_2 + \dots + X_w = k \end{array} \right.$

> Space of states is
$$E = \left\{ (X_1, X_2, ..., X_w) \middle| X_i \in \{0, 1\} \text{ and } \sum_{i=1}^w X_i < k \right\} \bigcup A$$

With dimension $1 + {w \choose 1} + {w \choose 2} + ... + {w \choose k-1} + 1$

<u>Notation</u>: state $(i_1, i_2, ..., i_m)$ if $i_1=i_2=...=i_m=1$ and $i_l=0$ otherwise

Transition matrix

						_			_			_		_			_	_	_			_	_			_				_	_		_		_	
Etats	0	-	10	m	4	ю	ω	~	ω	a	₽	(15) (1	(13)	(1 .4)	(gp)	(g l)	(17) (17)	(18)	(8 L)	(1,10)	(23) (23)	2 , 4)	(2 D)	(28)	67	(28) (28)	(5 (5 (5)	9 9 9	:	3	:	68	(8,10)	(0;10) (0)	₹	
0	q	q	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0		0	0	0	0	
1	0	0	q	0	0	0	0	0	0	0	0	q	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0		0	0	0	lo	
2	0	0	0	q	0	0	0	0	0	0	0	0	q	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0		0	0	0	0	
3	0	0	0	0	q	0	0	0	0	0	0	0	0	q	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0		0	0	0	0	
4	0	0	0	0	0	q	0	0	0	0	0	0	0	0	q	0	0	0	0	0	0	0	0	0	0	0	0	0		0		0	0	0	0	
5	0	0	0	0	0	0	q	0	0	0	0	0	0	0	0	q	0	0	0	0	0	0	0	0	0	0	0	0		0		0	0	0	0	
6	0	0	0	0	0	0	0	q	0	0	0	0	0	0	0	0	q	0	0	0	0	0	0	0	0	0	0	0		0		0	0	0	0	
7	0	0	0	0	0	0	0	0	q	0	0	0	0	0	0	0	0	q	0	0	0	0	0	0	0	0	0	0		0		0	0	0	0	
8	0	0	0	0	0	0	0	0	0	q	0	0	0	0	0	0	0	0	q	0	0	0	0	0	0	0	0	0		0		0	0	0	0	
9	0	0	0	0	0	0	0	0	0	0	q	0	0	0	0	0	0	0	0	q	0	0	0	0	0	0	0	0		0		0	0	0	0	
10	р	р	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0		0	0	0	0	
(1,2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	q	0	0	0	0	0	0	0		0		0	0	0	0	
(1,3)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	q	0	0	0	0	0	0		0		0	0	0	0	
(1,4)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	q	0	0	0	0	0		0		0	0	0	0	
(1,5)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	q	0	0	0	0		0		0	0	0	0	
(1,6)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	q	0	0	0		0		0	0	0	0	
(1,7)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	q	0	0		0		0	0	0	0	
(1,8)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	q	0		0		0	0	0	0	Tra
(1,9)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	q		0		0	0	0	0	-
(1,10)	0	0	р	0	0	0	0	0	0	0	0	р	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0		0	0	0	0	
(2,3)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0		0	0	0	0	
(2,4)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0		0	0	0	0	
(2,5)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0		0	0	0	0	
(2,6)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0		0	0	0	0	
(2,7)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0		0	0	0	0	
(2,8)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0		0	0	0	0	
(2,9)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0		0	0	0	0	
(2,10)	0	0	0	Ρ	0	0	0	0	0	0	0	0	p	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0		0	0	0	0	
																														0						
(i-1,j-1)																														q						
																														0						
(8,9)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0		0	0	q	0	
(8,10)	0	0	0	0	0	0	0	0	0	Ρ	0	0	0	0	0	0	0	0	P	0	0	0	0	0	0	0	0	0		0		0	0	0	0	
(9,10)	0	0	_	0	0	0	0	0	0	0	Ρ	0		0	0	0	0	0	0	Ρ	0	0	0	0	0	0	0	0		0		0	0	0	0	
A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ρ	ρ	р	P	Ρ	P	Ρ	P		Ρ		Ρ	p	P	1	

Transition of state (i,j) to absorbing state with probability p:

THALES

Vector of initial probabilities

$$\begin{split} \mathbf{X} = & \left[b\big(0,10,p\big) \quad \frac{1}{10} b\big(1,10,p\big) \dots \frac{1}{10} b\big(1,10,p\big) \quad \frac{1}{45} b\big(2,10,p\big) \dots \frac{1}{45} b\big(2,10,p\big) \quad 1 - B\big(2,10,p\big) \right]^{\mathsf{t}} \\ & \text{with } b(i,10,p) = \mathbf{C}_{10}^{i} p^{i} q^{10-i} \text{ and } \quad B(i,10,p) = \sum_{i=1}^{i} \mathbf{C}_{10}^{i} p^{i} q^{10-i} \end{split}$$

Probability to observe a cluster of k=3 events or more in a window of size w=10 scanning the period of length T=365 is given by a product

 $M^{N}X$ with N=356

Results

Discretization	Da	ау	Hour						
Method	Bernoulli	Poisson	Bernoulli	Poisson					
Monte Carlo direct	0.1250	0.1329	0.1310	0.1329					
RdP, Monte Carlo	0.1225	0.1317	0.1251	0.1317					
Simple Markov model	0.0991	0.1176	0.1274	0.1280					
Double scanning window	0.1014	NaN	0.1296	NaN					
Complete Markov model	0.1028	0.1217	NaN	NaN					

Conclusions

Results obtained using Bernoulli model converge to those using Poisson models if discretization step converges to zero

As far as we know there does not exist exact method enabling to solve in « short » time the problem to estimate the probability of existence of a cluster of events.

✤ … Our method allow to find an approximation of this probability in acceptable time.Obtained results are almost identical provided the discretization is fine enough.

Proposed method are different and range from simulations and combinatorics to the use of Markov chains.

Assume n linearly (serially) arranged components

each component is associated with a failure indicator \boldsymbol{I}_{i}

MODEL I

k-within-r-out-of-n system

system failed if exist window of size r (covering r objects) with at least k failed components

MODEL II

k-out-of-n r=n

MODEL III

consecutive k-out-of-n r=k

Denote

- K_n^k Unreability of k-out-of-n system
- $T_n^{l,h}$ Unreability of I-to-h-out-of-n system
- C_n^k Unreability of consecutive k-out-of-n system
- P_i , Q_i Reliability and unreability of k-th component

It holds

$$K_i^j = 0, j > i$$
 $K_i^j = 1, j \le 0$ $K_i^j = Q_i K_{i-1}^{j-1} + P_i K_{i-1}^j, otherwise$

$$T_{i}^{l,h} = 0, (l > i) \lor (h < 0) \qquad T_{i}^{l,h} = 1, (l \le 0) \land (h \ge i)$$

$$T_{i}^{l,h} = Q_{i}T_{i-1}^{l-1,h-1} + P_{i}T_{i-1}^{l,h}, otherwise$$

 $C_i^j = 0, j > i$ $C_i^j = 1, j \le 0$ $C_i^j = Q_i C_{i-1}^{j-1} + P_i C_{i-1}^k, otherwise$

Implementation

Using binary decision diagrams of Bryant, i.e. Shannon like decomposition of Boolean formulas

What can we get

MODEL I

k-within-r-out-of-n system

system failed if exist window of size r (covering r objects) with at least k failed components

Provided all components have the same reliability, for k-within-r-out-of-n system the complexity is $O(2^h.k.n)$, $0 \le h \le r$, so that for small r (tenths) we are able to calculate exact results thousands of components on "ordinary" PC computer

