THALES

Use of Monte Carlo when estimating reliability of complex systems

COMPSTAT 2010: August 27, 2010
Jaromir Antoch, Yves Dutuit, Julie Berthon
Charles University Prague, Thales Bordeaux, University Bordeaux 1

- Clusters and scan statistics : simple example
- Simulation methods
* Monte-Carlo
* Petri nets
- Markov approach
* Simplified Markov chain - one scan window
* Simplified Markov chain - double scan window
* Complete Markov chain
- Simulation results and comparison
- Conclusions

(2) Charles University Prague, Thales Bordeaux, University Bordeaux 1

Goal : calculate probability that we will observe a cluster of k or more events in a scanning windows of length w moving during a fixed period of length \mathbf{T}.

> Any window of length w can constain a cluster
$>$ Windows overlap
(3) Charles University Prague, Thales Bordeaux, University Bordeaux 1
ims
$\square \begin{gathered}\text { Mryturnt de } \\ \text { Mathemsinues }\end{gathered}$
do Berdigane
Example:

$$
\left\{\begin{array}{l}
\mathrm{T}=\text { one y ear, i.e. } 365 \text { day s } \\
\lambda \text { or } \mathrm{p} \text { correspond to } 8 \text { events per y ear (on mean) } \\
(\mathrm{w}, \mathrm{k})=(10,3): 3 \text { events in } 10 \text { day }
\end{array}\right.
$$

Solutions

- Monte Carlo simulations
- direct (implemented using a specific algorithm)
- supported by Petri nets
- Markov chains

Two probability models:

- Bernoulli $\operatorname{Be}(p)$
- Poisson $\quad \mathrm{P}(\lambda)$

Direct Monte-Carlo simulation

- Dates of accidents are generated along the considered distribuion to cover given period of observation [0,T[

$$
0<\varepsilon_{1}<\varepsilon_{2}<\ldots<\varepsilon_{S} \leq \mathrm{T}
$$

- List of dates is scanned until the cluster is observed
- Counter of clusters - Nb_Cluster - is incremented by 1

We estimate unknown parameter using the quantity

$$
\frac{\mathrm{Nb} _ \text {Cluster }}{\mathrm{N}}
$$

N est is number of repetitions of the simulation.

	w	10	?			Number of years with a cluster							116				
,	p	$8 / 365$?			Number of clusters							122		?		
1	k	3	?			Mean number of accidents per year							8,09				
I	T	365	?														
;	$\stackrel{\vec{E}}{\underline{E}}$		$$	$\begin{aligned} & \stackrel{̣}{山 3} \\ & \stackrel{1}{\succ} \\ & \stackrel{5}{c} \end{aligned}$	\checkmark	-	-	-	-	-	-	\checkmark	-	-	-	∇	v
4	simu_749	0	8	0	102	109	161	177	205	228	233	300					
5	simu_750	0	9	0	11	66	71	81	98	199	226	256	319				
i6	simu_751	0	7	0	28	31	129	132	160	191	237						
37	simu_752	2	10	1	50	54	55	57	62	91	197	265	282	319			
8	simu_753	0	8	0	48	60	150	175	208	229	278	348					
i9	simu_754	0	5	0	227	248	295	312	313								
i0	simu_755	0	5	0	7	59	75	307	311								
11	simu_756	0	8	0	76	95	104	224	272	288	293	327					
12	simu_757	0	8	0	92	126	139	170	214	226	230	346					
3	simu_758	0	4	0	71	94	173	303									
4	simu_759	1	11	1	30	55	128	181	210	288	310	314	316	333	348		
i5	simu_760	0	9	0	68	77	201	228	255	305	317	325	339				
i6	simu_761	0	6	0	14	171	214	242	249	257							
i7	simu_762	0	3	0	37	208	271										
8	simu_763	0	8	0	52	57	87	167	177	197	223	322					
i9	simu_764	0	5	0	166	174	334	340	347								
'0	simu_765	1	9	1	38	157	166	175	176	180	247	285	310				

(5) Charles University Prague, Thales Bordeaux, University Bordeaux 1

Use of Petri nets stimulating Monte Carlo simulation

- Counting processes (simple counting medium)
- 2 places and 2 transitions
- Initialization
> place 1 is set to one
, Nb_Cluster $=0$
- Variables $\varepsilon_{\mathrm{i}}(\mathrm{i}=1, \ldots, \mathrm{k})$ indicates dates of k consecutive accidents
- Index I allows to calculate continuously time elapsed between eventsl i and ($i+k-1$)
- Nb_Cluster passe à 1 when k accidents appear within a window of lentgh w

(6) Charles University Prague, Thales Bordeaux, University Bordeaux 1

MARKOV MODELS

Scanning observation period

Notation

- X_{i}... random variable denoting number of events in interval [i-1, i[
- $N(u, w) \ldots$ random variable counting number of events in window $[u, u+w[$
- p probability that an event will appear in a subinterval of the length equal t 01

Bernoulli model $\quad X_{i}= \begin{cases}1 & \text { with probability } \mathrm{p} \\ 0 & \text { with probability } \mathrm{q}=1-\mathrm{p}\end{cases}$
(7) Charles University Prague, Thales Bordeaux, University Bordeaux 1

Mathernat de de Berdeana
"Lost" of random variable $\mathrm{X}_{\mathrm{u}+1}$

From window $N(u, w)$ à to window $N(u+1, w)$

dependent

$$
\mathrm{P}\left(\mathrm{X}_{\mathrm{u}+1}=1 \mid \mathrm{N}(\mathrm{u}, \mathrm{w})=\mathrm{n}\right)=\frac{\mathrm{n}}{\mathrm{w}} \quad \mathrm{P}\left(\mathrm{X}_{\mathrm{u}+1}=0 \mid \mathrm{N}(\mathrm{u}, \mathrm{w})=\mathrm{n}\right)=1-\frac{\mathrm{n}}{\mathrm{w}}
$$

(8) Charles University Prague, Thales Bordeaux, University Bordeaux 1

States:

$\mathrm{E}_{0}, \mathrm{E}_{1}, \mathrm{E}_{2}: 0,1$ or 2 events in current window
$\mathrm{E}_{3} \quad: 3$ events or more in current window

Markov chain

Probability of one cluster of 3 events or more in a window of

$$
\text { size } w=10
$$

(9) Charles University Prague, Thales Bordeaux, University Bordeaux 1

$$
M=\left[\begin{array}{cccc}
q & p & 0 & 0 \\
\frac{q}{w} & \frac{p}{w}+q \frac{w-1}{w} & p \frac{w-1}{w} & 0 \\
0 & \frac{2 q}{w} & \frac{2 p}{w}+q \frac{w-2}{w} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Transition matrix

Vector of initial probabilities

$$
X=\left[\begin{array}{c}
q^{w} \\
p q^{w-1} \\
p^{2} q^{w-2} \\
1-q^{w}-p q^{w-1}-p^{2} q^{w-2}
\end{array}\right]
$$

Number of iterations

Probability to find cluster consisting of $\mathrm{k}=3$ events or more in window of size $\mathrm{w}=10$ scanning the period of length $\mathrm{T}=365$ is given by product $\mathrm{M}^{\mathrm{N} X} \quad \mathrm{~N}=356$

Problem : Model allows the "ways" which cannot be realized in practice

Division of the scanning window into two sub-windows

State is: $\left\{\begin{array}{l}\text { either pair }(i, j) \text { if } i+j<k \\ \text { absorbing state if } i+j=k\end{array}\right.$

Transition matrix is matrix of size $\mathrm{D} \times \mathrm{D}$ avec $\mathrm{D}=\mathrm{k}(\mathrm{k}-1)+1$

Transition probabilities and vector of initial probabilities are calculated analogously as before

$$
\mathrm{M}=\left[\begin{array}{ccccccc}
\mathrm{q} & 0 & \mathrm{q} \cdot\left(\frac{2}{\mathrm{w}}\right) & 0 & 0 & 0 & 0 \\
\mathrm{p} & \mathrm{q} \cdot\left(1-\frac{2}{\mathrm{w}}\right) & \mathrm{p} \cdot\left(\frac{2}{\mathrm{w}}\right) & 0 & \mathrm{q}\left(\frac{2}{\mathrm{w}}\right) \cdot\left(1-\frac{2}{\mathrm{w}}\right) & 0 & 0 \\
0 & \mathrm{q} \cdot\left(\frac{2}{\mathrm{w}}\right) & \mathrm{q} \cdot\left(1-\frac{2}{\mathrm{w}}\right) & 0 & \mathrm{q} \cdot\left(\frac{2}{\mathrm{w}}\right) \cdot\left(\frac{2}{\mathrm{w}}\right) & \mathrm{q} \cdot\left(\frac{4}{\mathrm{w}}\right) & 0 \\
0 & \mathrm{p} \cdot\left(1-\frac{2}{\mathrm{w}}\right) & 0 & \mathrm{q} \cdot\left(1-\frac{4}{\mathrm{w}}\right) & \mathrm{p} \cdot\left(\frac{2}{\mathrm{w}}\right) \cdot\left(1-\frac{2}{\mathrm{w}}\right) & 0 & 0 \\
0 & \mathrm{q} \cdot\left(\frac{2}{\mathrm{w}}\right) & \mathrm{p} \cdot\left(1-\frac{2}{\mathrm{w}}\right) & \mathrm{q} \cdot\left(\frac{4}{\mathrm{w}}\right) & \mathrm{p} \cdot\left(\frac{2}{\mathrm{w}}\right) \cdot\left(\frac{2}{\mathrm{w}}\right)+\mathrm{q} \cdot\left(1-\frac{2}{\mathrm{w}}\right) \cdot\left(1-\frac{2}{\mathrm{w}}\right) & \mathrm{p} \cdot\left(\frac{4}{\mathrm{w}}\right) & 0 \\
0 & 0 & 0 & 0 & \mathrm{q} \cdot\left(\frac{2}{\mathrm{w}}\right) \cdot\left(1-\frac{2}{\mathrm{w}}\right) & \mathrm{q} \cdot\left(1-\frac{4}{\mathrm{w}}\right) & 0 \\
0 & 0 & 0 & \mathrm{p} & \mathrm{p} \cdot\left(1-\frac{2}{\mathrm{w}}\right) & \mathrm{p} \cdot\left(1-\frac{4}{\mathrm{w}}\right) & 1
\end{array}\right]
$$

$$
X=\left[\begin{array}{c}
b\left(0, \frac{w}{2}, p\right)^{2} \\
b\left(0, \frac{w}{2}, p\right) b\left(1, \frac{w}{2}, p\right) \\
b\left(1, \frac{w}{2}, p\right) b\left(0, \frac{w}{2}, p\right) \\
b\left(0, \frac{w}{2}, p\right) b\left(2, \frac{w}{2}, p\right) \\
b\left(1, \frac{w}{2}, p\right) b\left(1, \frac{w}{2}, p\right) \\
b\left(2, \frac{w}{2}, p\right) b\left(0, \frac{w}{2}, p\right) \\
1-B(2, w, p)
\end{array}\right]
$$

"Complete" model

either w-uplet $\left(X_{1}, X_{2}, \ldots, X_{w}\right)$ if $X_{1}+X_{2}+\ldots+X_{w}<k$
$>$ State is:

$$
\text { Or absorbing A if } X_{1}+X_{2}+\ldots+X_{w}=k
$$

\Rightarrow Space of states is $\mathrm{E}=\left\{\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{w}}\right) \mid \mathrm{X}_{\mathrm{i}} \in\{0,1\}\right.$ and $\left.\sum_{\mathrm{i}=1}^{\mathrm{w}} \mathrm{X}_{\mathrm{i}}<\mathrm{k}\right\} \bigcup \mathrm{A}$ With dimension $1+\binom{\mathrm{w}}{1}+\binom{\mathrm{w}}{2}+\ldots+\binom{\mathrm{w}}{\mathrm{k}-1}+1$

Notation: state $\left(i_{1}, i_{2}, \ldots, i_{m}\right)$ if $i_{1}=i_{2}=\ldots=i_{m}=1$ and $i_{1}=0$ otherwise

Transition matrix

$\begin{aligned} & \text { 䡘 } \\ & \text { 品 } \end{aligned}$	0	-	N	\cdots	*	ω	0	\cdots	∞	0	ㅇ	ल			$\begin{aligned} & 28 \\ & \approx \end{aligned}$		\cdots			$\stackrel{\sim}{\square}$			$\begin{aligned} & 68 \\ & 0 \end{aligned}$							3		$\begin{aligned} & \AA \\ & \propto \\ & \infty \end{aligned}$	$\frac{\stackrel{O}{9}}{9}$	$\frac{\square}{\square}$	4
0	9	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	...	0	...	0	0	0	0
1	0	0	9	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\ldots	0	...	0	0	0	0
2	0	0	0	q	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\ldots	0	...	0	0	0	0
3	0	0	0	0	9	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	...	0	...	0	0	0	0
4	0	0	0	0	0	q	0	0	0	0	0	0	0	0	q	0	0	0	0	0	0	0	0	0	0	0	0	0	...	0	...	0	0	0	0
5	0	0	0	0	0	0	9	0	0	0	0	0	0	0	0	q	0	0	0	0	0	0	0	0	0	0	0	0	...	0	...	0	0	0	0
6	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0	0	0	0	0	...	0	...	0	0	0	0
7	0	0	0	0	0	0	0	0	q	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0	0	0	0	\ldots	0	...	0	0	0	0
8	0	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0	0	0	...	0	...	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0	0	q	0	0	0	0	0	0	0	0	\ldots	0	...	0	0	0	0
10	p	P	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\ldots	0	...	0	0	0	0
(1,2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0	...	0	...	0	0	0	0
(13)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	\ldots	0	...	0	0	0	0
(1,4)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	0	0	...	0	...	0	0	0	0
(1.5)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	0	...	0	...	0	0	0	0
(1, $\overline{6}$)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	...	0	...	0	0	0	0
(1,7)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	q	0	0	..	0	...	0	0	0	0
(18)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	q	0	...	0	...	0	0	0	0
(19)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	\ldots	0	...	0	0	0	0
(1,10)	0	0	P	0	0	0	0	0	0	0	0	P	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	...	0	...	0	0	0	0
(2,3)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	...	0	...	0	0	0	0
$(2,4)$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\ldots	0	...	0	0	0	0
(25)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	...	0	...	0	0	0	0
(2, 6)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\ldots	0	...	0	0	0	0
(2,7)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	...	0	...	0	0	0	0
(28)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	...	0	...	0	0	0	0
(29)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	...	0	...	0	0	0	0
(2,10)	0	0	0	P	0	0	0	0	0	0	0	0	P	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	...	0	...	0	0	0	0
...	\cdots	0
(i-1,j-1)	...	\ldots	\ldots	\ldots	\ldots	9			\ldots
...	\ldots	…	...	\cdots	\cdots	\cdots	\cdots	\cdots	...	…	0	\ldots	\ldots
(8,9)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	...	0	...	0	0	9	0
(8,10)	0	0	0	0	0	0	0	0	0	P	0	0	0	0	0	0	0	0	P	0	0	0	0	0	0	0	0	0	\ldots	0	...	0	0	0	0
(9,10)	0	0	0	0	0	0	0	0	0	0	P	0	0	0	0	0	0	0	0	p	0	0	0	0	0	0	0	0	...	0	...	0	0	0	0
A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	P	P	P	P	P	P	p	P	...	p		P	P	P	1

Transition of state (\mathbf{i}, j) to state ($\mathbf{i}-1, \mathrm{j}-1$) with probability q :

Transition of state (\mathbf{i}, j) to absorbing state with probability \mathbf{p} :

Vector of initial probabilities

$X=\left[b(0,10, p) \quad \frac{1}{10} b(1,10, p) \ldots \frac{1}{10} b(1,10, p) \quad \frac{1}{45} b(2,10, p) \ldots \frac{1}{45} b(2,10, p) \quad 1-B(2,10, p)\right] t$
with $b(i, 10, p)=C_{10}^{i} p^{i} q^{10-i}$ and $B(i, 10, p)=\sum^{i} C_{10}^{i} p^{i} q^{10-i}$

Probability to observe a cluster of $k=3$ events or more in a window of size $\mathrm{w}=10$ scanning the period of length $\mathrm{T}=365$ is given by a product

$\underline{M^{N} X}$ with $N=356$

Cobyruitie

Results

Discretization	Day		Hour	
Method	Bernoulli	Poisson	Bernoulli	Poisson
Monte Carlo direct	0.1250	0.1329	0.1310	0.1329
RdP, Monte Carlo	0.1225	0.1317	0.1251	0.1317
Simple Markov model	0.0991	0.1176	0.1274	0.1280
Double scanning window	0.1014	NaN	0.1296	NaN
Complete Markov model	0.1028	0.1217	NaN	NaN

Conclusions

Results obtained using Bernoulli model converge to those using Poisson models if discretization step converges to zero

* As far as we know there does not exist exact method enabling to solve in « short» time the problem to estimate the probability of existence of a cluster of events.
-... Our method allow to find an approximation of this probability in acceptable time. Obtained results are almost identical provided the discretization is fine enough.
*Proposed method are different and range from simulations and combinatorics to the use of Markov chains.

Assume n linearly (serially) arranged components
each component is associated with a failure indicator I_{i}

MODEL I

k-within-r-out-of-n system
system failed if exist window of size r (covering r objects) with at least \mathbf{k} failed components

MODEL II

k-out-of-n r=n

MODEL III
consecutive k-out-of-n r=k
(20) Aéronautique

Denote

$K_{n}^{k} \quad$ Unreability of k -out-of-n system
$T_{n}^{l, h} \quad$ Unreability of I-to-h-out-of-n system
$C_{n}^{k} \quad$ Unreability of consecutive k-out-of-n system
$P_{i}, Q_{i} \quad$ Reliability and unreability of k -th component

It holds

$$
\begin{aligned}
& K_{i}^{j}=0, j>i \quad K_{i}^{j}=1, j \leq 0 \quad K_{i}^{j}=Q_{i} K_{i-1}^{j-1}+P_{i} K_{i-1}^{j}, \text { otherwise } \\
& T_{i}^{l, h}=0,(l>i) \vee(h<0) \quad T_{i}^{l, h}=1,(l \leq 0) \wedge(h \geq i) \\
& T_{i}^{l, h}=Q_{i} i_{i-1}^{l-1, h-1}+P_{i} T_{i-1}^{l, h}, \text { otherwise } \\
& C_{i}^{j}=0, j>i \quad C_{i}^{j}=1, j \leq 0 \quad C_{i}^{j}=Q_{i} C_{i-1}^{j-1}+P_{i} C_{i-1}^{k}, \text { otherwise }
\end{aligned}
$$

Implementation

Using binary decision diagrams of Bryant, i.e. Shannon like decomposition of Boolean formulas

What can we get

MODEL I

k-within-r-out-of-n system
system failed if exist window of size r (covering r objects) with at least k failed components

Provided all components have the same reliability, for k-within-r-out-of-n system the complexity is $\mathrm{O}\left(2^{\wedge} h . k . n\right), 0<=h<=r$, so that for small r (tenths) we are able to calculate exact results thousands of components on "ordinary" PC computer

