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From Deterministic to Stochastic Programming

To calculate an optimal decision x ∈ Rn in a deterministic world solve

minimize x : f (x)
subject to x ∈ X ,

with some deterministic cost function f (·). In a stochastic world replace deterministic pa-
rameters by probability distributions or stochastic processes and optimize over a probability
functional F, i.e.

minimize x : F(f (x,Ξ))
subject to (x,Ξ) ∈ X ,

on some probability space Ξ, where f (·, ·) is a stochastic cost function.

The probability functional F is commonly the expectation, some (coherent) risk measure,
or a weighted combination: link to Mathematical Finance.
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Stochastic Programming - Discrete Uncertainty

Analytical solutions of stochastic programs using continuous distribution functions may
only be computed using unrealistic assumptions and simplifications of the optimization
model as well as the uncertainty model.

To build real-world decision support applications, uncertainty has to be expressed in some
discrete representation to obtain numerical solutions, which depends on the stochastic
stage structure (static vs. dynamic):

• Single-stage, two-stage: (multi-variate) discrete probability distribution (scenario set).

• Multi-stage: discrete-time, discrete-space (multi-variate) stochastic process. Approx-
imation of non-anticipativity constraints (scenario tree).
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Stochastic Programming - Integrating Uncertainty

• Optimization model extended to specify the event space at each decision stage.

– integrate objective real-world constraints and dynamics, i.e. the event handling
(quantitative aspects of the solution).

• Uncertainty model commonly chosen independently from optimization model.

– reflect subjective beliefs of the decision taker (qualitative aspects of the solution).
– due to the subjective nature a wide range of heuristic methods and procedures

exist, mainly sampling-based or clustering-based.
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Interdisciplinary Approach

Motivation: Generalization of financial portfolio optimization using contemporary risk man-
agement techniques by combining different areas of research:

• Financial Engineering - Portfolio selection [Markowitz],

• Mathematical Finance - (Coherent) Risk measures [Artzner et al.],

• Operations Research - Stochastic Optimization.

One of the simplest Stochastic Programming examples: static single-stage (no recourse
action), but powerful in terms of modeling opportunities and applications.
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Financial engineering - Portfolio selection

• Classical bi-criteria portfolio optimization problem (Markowitz 1952, 1958).

• Calculate an optimal investment portfolio out of set of assets (or asset categories) A
with finite cardinality a = |A|.

• Given a co-variance matrix C and a return vector M for all assets ∈ A find the
optimal portfolio x by solving the quadratic optimization problem:

minimize x : x C xT

subject to x×M ≥ µ
x ∈ X .

Let µ be the minimum return required by the investor. M and C are calculated from
historical data and/or generated using expert opinion.

• Variance is defined as the main risk factor and is minimized.
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Operations Research - Stochastic Portfolio Optimization

Instead of using a vector of asset means M and a co-variance matrix C, a set of asset
return scenarios S is used, i.e. a multi-variate probability distribution.

• S has finite cardinality s = |S|.

• Each scenario si ∈ S is equipped with a weight / probability pi ≥ 0, with ∑s
j=1 pj = 1.

• S is the result of scenario generation: Sampling historical data and/or generated using
expert opinion (time series model estimation and simulation, sampling), and using an
(optimal) approximation scheme.

Better dependency modeling instead of using a co-variance matrix, subtle weighting of
scenarios possible (using some indices like the VIX).
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Stochastic Portfolio Optimization

Let x ∈ Ra be some portfolio, with budget normalization, i.e. ∑
a∈A xa ≤ 1.

Rewrite S as matrix S: Loss distribution ` for some portfolio x is `x =
〈
x, S

〉
.

Two dimensions: Value (Return) E(`x) and Risk Fρ(`x)

Optimization problem:

maximize x : E(`x)
minimize x : Fρ(`x)
subject to x ∈ X

Multi-criteria reformulation with risk-aversion parameter κ

maximize x : E(`x)− κFρ(`x), subject to x ∈ X
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Stochastic Portfolio Optimization - Constraints

Most common constraints, included into X are

• upper/lower bounds: xa ≥ la, xa ≤ ua ∀a ∈ A
(e.g. no short selling allowed: la = 0, i.e. xa ≥ 0, ∀a ∈ A),

• minimum expected profit: E(`x) ≥ m,

• maximum expected risk: Fρ(`x) ≤ r,

• cardinality constraints: #(xa > 0) ≤ K,K ∈ N,

• transaction costs,

• . . .
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Stochastic Portfolio Optimization - Risk Measures & Generalization

Commonly applied risk measures Fρ for portfolio management:

• Standard Deviation (resembles Markowitz): Fρ = σ =
√∑
i∈S pi(`i − E(`))2.

• Value at Risk (VaR) at level (1-α) is the α-Quantile of loss distribution (important
for regulatory purposes, easy to evaluate, hard to optimize):

Fρ = VaRα = inf{l ∈ R : P(l > `) ≤ 1− α} = inf{l ∈ R : Fl(`) ≤ α}

• Conditional Value at Risk (CVaR), Expected Shortfall (substitute for VaR - linear
programming reformulation, coherent risk measure): Fρ = CVaRα = E(`|` ≤ VaRα)

Different reformulations are available (in the above cases: quadratic, d.c., linear). Omega.
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Evolutionary Algorithm

We consider the single objective version of the optimization problem (minimize risk subject
to a minimal required return)

minimize F(`x)
subject to E(πx) > µ

(1)

Standard portfolio constraints (budget normalization & upper and lower bounds)

subject to ∑
a∈A xa = 1
l ≤ xa ≤ u ∀a ∈ A (2)

Optimization can be tricky (real-world constraints), Evaluation is cheap!
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Genotype encoding

Each gene consists of of two parts:

1. One determines the amount of budget to be distributed to each selected asset, and

2. the other determines in which assets to invest.

The first part g1 consists of a predefined number b of real values between 0 and 1 and the
second part g2 is encoded as a bit-string of the size of the amount of assets.

Example with b = 6 and a = 3: (0.31, 0.62, 0.39, 0.54, 0.22, 0.04, 1, 0, 1)

Invest into asset 1 and 3 buckets (1,2,1,2,1,1), i.e. each 0.5 of the budget.
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Genotype encoding

Example. Let us define a bucket size of b = 10 and consider that want to select the
optimal portfolio out of a = 5 assets. A random chromosome with a fixed number of 3
asset picks may then consist of the following two parts g1 and g2.

g1 = (0.4893, 0.3377, 0.9001, 0.3692, 0.1112, 0.7803, 0.3897, 0.2417, 0.4039, 0.0965),
g2 = (1, 1, 0, 0, 1).

If we re-map these two parts, we obtain the buckets (2, 2, 3, 2, 1, 3, 2, 1, 2) and receive the
following portfolio

x = (0.3, 0.5, 0, 0, 0.2),

which is a valid portfolio composition, and can be used to calculate the loss function and
to conduct a full evaluation of the respective portfolio optimization formulation within the
evolutionary optimization process.
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Evolutionary operators

• Elitist selection. A certain number o1 of the best chromosomes will be used within
the next population.

• Crossover. A number o2 of crossovers will be added, both 1-point crossovers (g1 and
g2) and intermediate crossovers (only g1).

• Mutation. o3 mutated chromosomes will be added.

• Random addition. Furthermore o4 randomly sampled chromosomes are added, which
are also used for creating the initial population.

The specific number of operators o = (o1, o2, o3, o4) has to be determined for each concrete
number of assets a as well as the parameter b.
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Example: Probabilistic constraints

Let the risk be the variance (resemble classic Markowitz approach): F(`x) = Variance(`x)

Optimization is easy (quad.prog.), but what if we add a probabilistic constraint?

subject to P(πx ≤ δ) ≤ ε.

Let the fitness value which we aim to minimizing be f . We calculate the penalty p by

p = f × (P(πx ≤ δ)− ε)× γ,

where γ is a factor to control the penalization level. The fitness value used for evolutionary
optimization purposes is thus given by f ′ = f + p. Such a constraint can be implemented
and handled conveniently.
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Numerical results

Implemented using MatLab 2008b without using any further toolboxes.

30 stocks of the Dow Jones Industrial Average at the beginning of 2010, i.e. the ticker
symbols AA, AXP, BA, BAC, CAT, CSCO, CVX, DD, DIS, GE, HD, HPQ, IBM, INTC,
JNJ, JPM, KFT, KO, MCD, MMM, MRK, MSFT, PFE, PG, T, TRV, UTX, VZ, WMT,
XOM. Daily data from each trading day in 2009 has been used. Weekly returns have been
calculated.

b = 100 buckets which are distributed to the respective asset picks, such that each chro-
mosome has a length of b + a = 130. The initial population consists of 1000 random
chromosomes. The operator structure o = (100, 420, 210, 100).

First, we optimize without using the probabilistic constraints, i.e. the main optimization
problem using µ = 0.001. Then we add the probabilistic constraint with δ = and ε = 0.1.
These values have been chosen after analyzing the resulting loss distribution.
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Numerical results - DJIA (a = 30)

Diversification grade is not changed, KFT, VZ, XOM are dropped and HPQ, MSFT, MMM
are picked.
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Numerical results - DJIA (a = 30)

P1 (no P) P2 P3(1/N)
Mean 0.0024 0.0051 0.0062
Std.Dev. 0.02 0.0225 0.0398
Prob. 0.1774 0.1089 0.2702
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Numerical results - S&P100 (a = 100)

19



Numerical results - S&P100 (a = 100)

P1 (no P) P2 P3(1/N)
Mean 0.0011 0.0009 0.0007
Std.Dev. 0.0220 0.0231 0.0451
Prob. 0.1677 0.1238 0.3134
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