Simulation results for GWAS

A Model Selection Approach for Genome Wide Association Studies

Florian Frommlet, Piotr Twarog, Malgorzata Bogdan

Department of Statistics and Decision Support Systems, University of Vienna, Austria

Paris, August 2010

Genome Wide Association Studies

Data structure: $Y \leftarrow X_1, \dots, X_p$ Up to one million SNPs X_1, \dots, X_p Trait Y quantitative or categorical (case control)

Question: Which *X_i* are actually associated with trait? Virtually all GWAS published so far: Single marker and

Model selection approach

Model specified by index vector $M = [i_1, \ldots, i_{k_M}]$

$$\mathcal{M}: Y = X_M \beta_M + \epsilon, \quad X_M = [X_{i_1}, \dots, X_{i_{k_M}}]$$

Genome Wide Association Studies

Data structure: $Y \leftarrow X_1, \ldots, X_p$

Up to one million SNPs X_1, \ldots, X_p Trait Y quantitative or categorical (case control)

Question:

Which X_i are actually associated with trait?

Virtually all GWAS published so far: Single marker analysis

Model selection approach

Model specified by index vector $M = [i_1, \ldots, i_{k_M}]$

$$\mathcal{M}: Y = X_M \beta_M + \epsilon, \quad X_M = [X_{i_1}, \dots, X_{i_{k_M}}]$$

Genome Wide Association Studies

Data structure: $Y \leftarrow X_1, \ldots, X_p$

Up to one million SNPs X_1, \ldots, X_p Trait Y quantitative or categorical (case control)

Question:

Which X_i are actually associated with trait?

Virtually all GWAS published so far: Single marker analysis

Model selection approach

Model specified by index vector $M = [i_1, \ldots, i_{k_M}]$

$$\mathcal{M}: Y = X_M \beta_M + \epsilon, \quad X_M = [X_{i_1}, \dots, X_{i_{k_M}}]$$

Classical model selection criteria

Selection criteria based on likelihood L_M Penalization of model size

 $-2 \log L_M + \text{Penalty} \cdot k_M$

Examples: AIC, BIC, RIC, Mallows C, etc.

 L_1 – penalization: LASSO etc.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Classical model selection criteria

Selection criteria based on likelihood L_M Penalization of model size

 $-2 \log L_M + \text{Penalty} \cdot k_M$

Examples: AIC, BIC, RIC, Mallows C, etc.

AIC ... Penalty = 2, BIC ... Penalty = $\log n$

 L_1 – penalization: LASSO etc.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Classical model selection criteria

Selection criteria based on likelihood L_M Penalization of model size

 $-2 \log L_M + \text{Penalty} \cdot k_M$

Examples: AIC, BIC, RIC, Mallows C, etc.

AIC ... Penalty = 2, BIC ... Penalty = $\log n$

 L_1 – penalization: LASSO etc.

Simulation results for GWAS

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Situation when p > n

Classical theory for AIC and BIC

Developed for p constant and $n \to \infty$

Results no longer valid when p > ne.g. BIC no longer consistent

Sparsity

Theory possible when number of true signals $k \ll p$

Reasonable assumption, only few SNPs expected to be associated with trait

Surprise

Under sparsity and p > n BIC is choosing too large models

Simulation results for GWAS

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Situation when p > n

Classical theory for AIC and BIC

Developed for p constant and $n \to \infty$

Results no longer valid when p > ne.g. BIC no longer consistent

Sparsity

Theory possible when number of true signals $k \ll p$

Reasonable assumption, only few SNPs expected to be associated with trait

Surprise

Under sparsity and p > n BIC is choosing too large models

Simulation results for GWAS

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Situation when p > n

Classical theory for AIC and BIC

Developed for p constant and $n \to \infty$

Results no longer valid when p > ne.g. BIC no longer consistent

Sparsity

Theory possible when number of true signals $k \ll p$

Reasonable assumption, only few SNPs expected to be associated with trait

Surprise

Under sparsity and p > n BIC is choosing too large models

Simulation results for GWAS

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Modifications of BIC

$BIC = -2\log L_M + k_M\log n$

For situation p > n under sparsity [Bogdan et al. (2004)]

$$mBIC = -2\log L_M + k_M\log(np^2 + d)$$

In a particular sense controlling FWE (related to Bonferroni)

FDR - controlling model selection criterion

$$mBIC2 = -2\log L_M + k_M\log(np^2 + d) - 2\log k_m!$$

Adaptivity to level of sparsity [Abramovich et al. (2006)]

Modifications of BIC

 $BIC = -2\log L_M + k_M\log n$

For situation p > n under sparsity [Bogdan et al. (2004)]

$$mBIC = -2\log L_M + k_M\log(np^2 + d)$$

In a particular sense controlling FWE (related to Bonferroni)

FDR - controlling model selection criterion

$$mBIC2 = -2\log L_M + k_M\log(np^2 + d) - 2\log k_m!$$

Adaptivity to level of sparsity [Abramovich et al. (2006)]

Modifications of BIC

 $BIC = -2\log L_M + k_M\log n$

For situation p > n under sparsity [Bogdan et al. (2004)]

$$mBIC = -2\log L_M + k_M\log(np^2 + d)$$

In a particular sense controlling FWE (related to Bonferroni)

FDR - controlling model selection criterion

$$mBIC2 = -2\log L_M + k_M\log(np^2 + d) - 2\log k_m!$$

Adaptivity to level of sparsity [Abramovich et al. (2006)]

Simulation results for GWAS

▲□▼▲□▼▲□▼▲□▼ □ ● ●

Theoretical papers

ABOS: Asymptotic Bayes optimality under sparsity

Multiple Testing, normal mixtures

M. Bogdan, A. Chakrabarti, F. Frommlet, J.K. Ghosh. Bayes oracle and asymptotic optimality of multiple testing procedures under sparsity. Arxiv 1002.3501

General priors, model selection

Florian Frommlet, Malgorzata Bogdan, Arijit Chakrabarti Asymptotic Bayes optimality under sparsity of selection rules for general priors. Arxiv 1005.4753

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theoretical papers

ABOS: Asymptotic Bayes optimality under sparsity

Multiple Testing, normal mixtures

M. Bogdan, A. Chakrabarti, F. Frommlet, J.K. Ghosh. Bayes oracle and asymptotic optimality of multiple testing procedures under sparsity. Arxiv 1002.3501

General priors, model selection

Florian Frommlet, Malgorzata Bogdan, Arijit Chakrabarti Asymptotic Bayes optimality under sparsity of selection rules for general priors. Arxiv 1005.4753

Simulation scenario

Population reference sample POPRES from dbGaP

• 309790 SNPs for 649 individuals of European ancestry

- k = 40 SNPs selected to be causal MAF between 0.3 and 0.5, pairwise correlation between -0.12 and 0.1
- Simulation of 1000 replicates from additive model M $Y = X_M \beta_M + \epsilon, \quad \epsilon_i \sim \mathcal{N}(0, 1)$

- 1. effect size for all SNPs constant at $\beta_j = 0.5$
- 2. β_i equally distributed between 0.27 and 0.66

Simulation scenario

Population reference sample POPRES from dbGaP

- 309790 SNPs for 649 individuals of European ancestry
- k = 40 SNPs selected to be causal MAF between 0.3 and 0.5, pairwise correlation between -0.12 and 0.1
- Simulation of 1000 replicates from additive model M $Y = X_M \beta_M + \epsilon, \quad \epsilon_i \sim \mathcal{N}(0, 1)$

- 1. effect size for all SNPs constant at $\beta_j = 0.5$
- 2. β_i equally distributed between 0.27 and 0.66

Simulation scenario

Population reference sample POPRES from dbGaP

- 309790 SNPs for 649 individuals of European ancestry
- k = 40 SNPs selected to be causal MAF between 0.3 and 0.5, pairwise correlation between -0.12 and 0.1
- Simulation of 1000 replicates from additive model M $Y = X_M \beta_M + \epsilon, \quad \epsilon_i \sim \mathcal{N}(0, 1)$

- 1. effect size for all SNPs constant at $\beta_j = 0.5$
- 2. β_j equally distributed between 0.27 and 0.66

Simulation scenario

Population reference sample POPRES from dbGaP

- 309790 SNPs for 649 individuals of European ancestry
- k = 40 SNPs selected to be causal MAF between 0.3 and 0.5, pairwise correlation between -0.12 and 0.1
- Simulation of 1000 replicates from additive model M $Y = X_M \beta_M + \epsilon, \quad \epsilon_i \sim \mathcal{N}(0, 1)$

- 1. effect size for all SNPs constant at $\beta_j = 0.5$
- 2. β_j equally distributed between 0.27 and 0.66

Simulation results for GWAS

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Heritability

Overall heritability is defined as

$$H^2 = rac{{{ extsf{Var}}\left({{X_M}{eta _M}}
ight)}}{{1 + { extsf{Var}}\left({{X_M}{eta _M}}
ight)}}$$

Heritability of an individual effect defined as

$$h_j^2 = \frac{\beta_j^2 \text{Var}(X_j)}{1 + \text{Var}(X_M \beta_M)} ,$$

Scenario 1 Overall heritability: $H^2 \approx 0.82$. Individual effect: $h_i^2 \sim 0.022$.

Scenario 2 Overall heritability: $H^2 \approx 0.81$. Individual effect: h_j^2 ranging from 0.006 till 0.037

Simulation results for GWAS

Heritability

Overall heritability is defined as

$$H^2 = rac{{{
m Var}}\left({{X_M}{eta _M}}
ight)}{{1 + {
m Var}}\left({{X_M}{eta _M}}
ight)}$$

Heritability of an individual effect defined as

$$h_j^2 = rac{eta_j^2 extsf{Var} (X_j)}{1 + extsf{Var} (X_M eta_M)} \; ,$$

Scenario 1 Overall heritability: $H^2 \approx 0.82$. Individual effect: $h_i^2 \sim 0.022$.

Scenario 2 Overall heritability: $H^2 \approx 0.81$. Individual effect: h_j^2 ranging from 0.006 till 0.037

Simulation results for GWAS

Heritability

Overall heritability is defined as

$${\cal H}^2 = rac{{
m Var}\,\left(X_Meta_M
ight)}{1+{
m Var}\,\left(X_Meta_M
ight)}$$

Heritability of an individual effect defined as

$$h_j^2 = rac{eta_j^2 extsf{Var} (X_j)}{1 + extsf{Var} (X_M eta_M)} \; ,$$

Scenario 1 Overall heritability: $H^2 \approx 0.82$. Individual effect: $h_i^2 \sim 0.022$.

Scenario 2 Overall heritability: $H^2 \approx 0.81$. Individual effect: h_i^2 ranging from 0.006 till 0.037

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Heritability

Overall heritability is defined as

$$H^2 = rac{{{ extsf{Var}}\left({{X_M}{eta _M}}
ight)}}{{1 + { extsf{Var}}\left({{X_M}{eta _M}}
ight)}}$$

Heritability of an individual effect defined as

$$h_j^2 = rac{eta_j^2 extsf{Var} (X_j)}{1 + extsf{Var} (X_M eta_M)} \; ,$$

Scenario 1 Overall heritability: $H^2 \approx 0.82$. Individual effect: $h_j^2 \sim 0.022$.

Scenario 2Overall heritability: $H^2 \approx 0.81$.Individual effect: h_j^2 ranging from 0.006 till 0.037

Simulation results for GWAS

FDR for both Scenarios

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 - のへの

Simulation results for GWAS

Power for Scenario 1

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Simulation results for GWAS

Power for Scenario 2

▲ロト ▲園 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ④ ♀ ⊙

Simulation results for GWAS

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Important conclusions

Power

Model selection has larger power than multiple testing procedures. In general both mBIC2 and mBIC are performing much better than multiple testing procedures

Heritability

Power of model selection procedures quite erratic in terms of individual heritability

This observation extremely important!

Order of p-values not necessarily corresponds with order of importance of a SNP for the trait

Simulation results for GWAS

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Important conclusions

Power

Model selection has larger power than multiple testing procedures. In general both mBIC2 and mBIC are performing much better than multiple testing procedures

Heritability

Power of model selection procedures quite erratic in terms of individual heritability

This observation extremely important!

Order of p-values not necessarily corresponds with order of importance of a SNP for the trait

Simulation results for GWAS

Power for Scenario 2

Ordered by noncentrality parameter $\frac{\left(\sum_{l=1}^{k} \beta_l Cov(x_j, x_l)\right)^2}{\sigma^2 Var(x_j)}$

500

I	mBIC2			BH	
SNP	freq	corr	SNP	freq	corr
'243410'	668	0.8958	'243410'	708	0.8958
'182913'	203	0.7728	'188154'	182	0.2628
'119266'	105	0.8416	'119266'	78	0.8416
'125713'	85	0.8311	'125713'	74	0.8311
'4613'	82	0.7683	'255836'	71	0.8351
'271397'	80	0.8162	'221042'	70	0.1116
'145745'	63	0.7230	'291932'	64	0.6255
'291932'	54	0.6255	'181596'	55	0.0970
'150321'	50	0.7659	'27741'	40	0.1137
'301398'	46	0.7669	'267989'	38	0.1008
'255836'	38	0.8351	'264343'	36	0.1007
'106264'	33	0.7277	'27668'	29	0.5742
'11081'	26	0.7187	'227937'	26	0.8372
'227937'	25	0.8372	'11020'	22	0.0896
'243472'	22	0.8954	'283397'	21	0.0875

|▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ | 重||||の��

r	mBIC2			BH	
SNP	freq	corr	SNP	freq	corr
'243410'	668	0.8958	'243410'	708	0.8958
'182913'	203	0.7728	'188154'	182	0.2628
'119266'	105	0.8416	'119266'	78	0.8416
'125713'	85	0.8311	'125713'	74	0.8311
'4613'	82	0.7683	'255836'	71	0.8351
'271397'	80	0.8162	'221042'	70	0.1116
'145745'	63	0.7230	'291932'	64	0.6255
'291932'	54	0.6255	'181596'	55	0.0970
'150321'	50	0.7659	'27741'	40	0.1137
'301398'	46	0.7669	'267989'	38	0.1008
'255836'	38	0.8351	'264343'	36	0.1007
'106264'	33	0.7277	'27668'	29	0.5742
'11081'	26	0.7187	'227937'	26	0.8372
'227937'	25	0.8372	'11020'	22	0.0896
'243472'	22	0.8954	'283397'	21	0.0875

mBIC2			BH		
SNP	freq	corr	SNP	freq	corr
'243410'	668	0.8958	'243410'	708	0.8958
'182913'	203	0.7728	'188154'	182	0.2628
'119266'	105	0.8416	'119266'	78	0.8416
'125713'	85	0.8311	'125713'	74	0.8311
'4613'	82	0.7683	'255836'	71	0.8351
'271397'	80	0.8162	'221042'	70	0.1116
'145745'	63	0.7230	'291932'	64	0.6255
'291932'	54	0.6255	'181596'	55	0.0970
'150321'	50	0.7659	'27741'	40	0.1137
'301398'	46	0.7669	'267989'	38	0.1008
'255836'	38	0.8351	'264343'	36	0.1007
'106264'	33	0.7277	'27668'	29	0.5742
'11081'	26	0.7187	'227937'	26	0.8372
'227937'	25	0.8372	'11020'	22	0.0896
'243472'	22	0.8954	'283397'	21	0.0875

I	mBIC2			BH	
SNP	freq	corr	SNP	freq	corr
'243410'	668	0.8958	'243410'	708	0.8958
'182913'	203	0.7728	'188154'	182	0.2628
'119266'	105	0.8416	'119266'	78	0.8416
'125713'	85	0.8311	'125713'	74	0.8311
'4613'	82	0.7683	'255836'	71	0.8351
'271397'	80	0.8162	'221042'	70	0.1116
'145745'	63	0.7230	'291932'	64	0.6255
'291932'	54	0.6255	'181596'	55	0.0970
'150321'	50	0.7659	'27741'	40	0.1137
'301398'	46	0.7669	'267989'	38	0.1008
'255836'	38	0.8351	'264343'	36	0.1007
'106264'	33	0.7277	'27668'	29	0.5742
'11081'	26	0.7187	'227937'	26	0.8372
'227937'	25	0.8372	'11020'	22	0.0896
'243472'	22	0.8954	'283397'	21	0.0875

Sum of correlations of FP under BH

Ordered by number of simulations in which SNP occurs as FP

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

Sum of correlations of FP under mBIC2

Ordered by number of simulations in which SNP occurs as FP

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへで

- Problems with multiple testing approach to GWAS when many causal SNPs are influencing traits small random correlations of genotypes determine which SNPs are selected
- Possible explanation for "Missing heritability" in GWAS
- Model selection approach can help
 - much larger power to detect causal SNPs
 - "False positives" are rather likely to be correlated with causal SNP

- Problems with multiple testing approach to GWAS when many causal SNPs are influencing traits small random correlations of genotypes determine which SNPs are selected
- Possible explanation for "Missing heritability" in GWAS
- Model selection approach can help
 - much larger power to detect causal SNPs
 - "False positives" are rather likely to be correlated with causal SNP

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Problems with multiple testing approach to GWAS when many causal SNPs are influencing traits small random correlations of genotypes determine which SNPs are selected
- Possible explanation for "Missing heritability" in GWAS
- Model selection approach can help
 - much larger power to detect causal SNPs
 - "False positives" are rather likely to be correlated with causal SNP

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Problems with multiple testing approach to GWAS when many causal SNPs are influencing traits small random correlations of genotypes determine which SNPs are selected
- · Possible explanation for "Missing heritability" in GWAS
- Model selection approach can help
 - much larger power to detect causal SNPs
 - "False positives" are rather likely to be correlated with causal SNP