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Model Selection Simulation results for GWAS

Genome Wide Association Studies

Data structure: Y ← X1, . . . ,Xp

Up to one million SNPs X1, . . . ,Xp

Trait Y quantitative or categorical (case control)

Question:
Which Xi are actually associated with trait?

Virtually all GWAS published so far: Single marker analysis

Model selection approach
Model specified by index vector M = [i1, . . . , ikM ]

M : Y = XMβM + ε, XM = [Xi1 , . . . ,XikM
]
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Classical model selection criteria

Selection criteria based on likelihood LM
Penalization of model size

−2 log LM + Penalty · kM

Examples: AIC, BIC, RIC, Mallows C , etc.

AIC . . . Penalty = 2, BIC . . . Penalty = log n

L1− penalization: LASSO
etc.
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Situation when p > n

Classical theory for AIC and BIC
Developed for p constant and n→∞

Results no longer valid when p > n
e.g. BIC no longer consistent

Sparsity
Theory possible when number of true signals k � p

Reasonable assumption, only few SNPs expected to be associated with
trait

Surprise
Under sparsity and p > n BIC is choosing too large models
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Modifications of BIC

BIC =−2 log LM + kM log n

For situation p > n under sparsity [Bogdan et al. (2004)]

mBIC =−2 log LM + kM log(np2 + d)

In a particular sense controlling FWE (related to Bonferroni)

FDR - controlling model selection criterion

mBIC2=−2 log LM + kM log(np2 + d)− 2 log km!

Adaptivity to level of sparsity [Abramovich et al. (2006)]
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Theoretical papers

ABOS: Asymptotic Bayes optimality under sparsity

Multiple Testing, normal mixtures
M. Bogdan, A. Chakrabarti, F. Frommlet, J.K. Ghosh.
Bayes oracle and asymptotic optimality of multiple testing procedures
under sparsity. Arxiv 1002.3501

General priors, model selection
Florian Frommlet, Malgorzata Bogdan, Arijit Chakrabarti
Asymptotic Bayes optimality under sparsity of selection rules for general
priors. Arxiv 1005.4753
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Simulation scenario

Population reference sample POPRES from dbGaP

• 309790 SNPs for 649 individuals of European ancestry

• k = 40 SNPs selected to be causal
MAF between 0.3 and 0.5,
pairwise correlation between -0.12 and 0.1

• Simulation of 1000 replicates from additive model M
Y = XMβM + ε, εi ∼ N (0, 1)

Two scenarios

1. effect size for all SNPs constant at βj = 0.5

2. βj equally distributed between 0.27 and 0.66
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Heritability

Overall heritability is defined as

H2 =
Var (XMβM)

1 + Var (XMβM)

Heritability of an individual effect defined as

h2j =
β2
j Var (Xj)

1 + Var (XMβM)
,

Scenario 1
Overall heritability: H2 ≈ 0.82.
Individual effect: h2j ∼ 0.022.

Scenario 2
Overall heritability: H2 ≈ 0.81.
Individual effect: h2j ranging from 0.006 till 0.037
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FDR for both Scenarios

mBIC2 mBIC1 BH Bonf
0

0.2

0.4

0.6

0.8

1
F

D
R

 

 

Scenario1
Scenario2



Model Selection Simulation results for GWAS

Power for Scenario 1
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Power for Scenario 2
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Important conclusions

Power
Model selection has larger power than multiple testing procedures.
In general both mBIC2 and mBIC are performing much better than
multiple testing procedures

Heritability
Power of model selection procedures quite erratic in terms of individual
heritability
This observation extremely important!
Order of p-values not necessarily corresponds with order of importance of
a SNP for the trait
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Power for Scenario 2

Ordered by noncentrality parameter
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15 most frequent false positives

mBIC2 BH
SNP freq corr SNP freq corr

’243410’ 668 0.8958 ’243410’ 708 0.8958
’182913’ 203 0.7728 ’188154’ 182 0.2628
’119266’ 105 0.8416 ’119266’ 78 0.8416
’125713’ 85 0.8311 ’125713’ 74 0.8311

’4613’ 82 0.7683 ’255836’ 71 0.8351
’271397’ 80 0.8162 ’221042’ 70 0.1116
’145745’ 63 0.7230 ’291932’ 64 0.6255
’291932’ 54 0.6255 ’181596’ 55 0.0970
’150321’ 50 0.7659 ’27741’ 40 0.1137
’301398’ 46 0.7669 ’267989’ 38 0.1008
’255836’ 38 0.8351 ’264343’ 36 0.1007
’106264’ 33 0.7277 ’27668’ 29 0.5742

’11081’ 26 0.7187 ’227937’ 26 0.8372
’227937’ 25 0.8372 ’11020’ 22 0.0896
’243472’ 22 0.8954 ’283397’ 21 0.0875
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Ordered by number of simulations in which SNP occurs as FP
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Conclusion

• Problems with multiple testing approach to GWAS when many
causal SNPs are influencing traits
small random correlations of genotypes determine which SNPs are
selected

• Possible explanation for ”Missing heritability” in GWAS

• Model selection approach can help
• much larger power to detect causal SNPs
• ”False positives” are rather likely to be correlated with causal SNP
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