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1 INTRODUCTION

e Forecasting in Cointegrated Processes in the Long-run

(1) System forecast (VEC (Vector Error Corrction) forecast) “with” cointegration constraint.

(2) Other forecasts: Univariate ARIMA forecast, Unrestricted VAR forecast and so on
“without” cointegration and/or integration constraints.

System forecast is optimal in the short-run.

What happens in the long-run?
Does cointegration or integration constraint matter in the long-run forecast?

= Engle and Yoo (1987): Cointegration matters in the long-run forecast.
Lin and Tsay (1996): Proper order of cointegration matters.
(Experimental Results.)

= Cristoffersen and Diebold (1998):
Only integration, bu not cointegration, matters in the long-run.
(Analytical Result.)



e Conclusions of the present paper:

When the parameters are known

Neither conintegration nor integration matters in the long-run forecast of cointegrated pro-
cesses, based upon the MSE ratio criteria.

When the parameters are estimated
The same conclusion applies with a different reason.

The estimation of the drift term is crucial.

The univariate ARIMA forecast performs better than the cointegrated system forecast.
The drift is estimated by time average of differenced data

e Organization of the Paper

Sec.2: Forecasts with Known Parameters.
Sec.3: Forecasts with Estimated Parameters.
Sec.4: Monte Carlo Experimente.

Sec.5: Concluding Remarks.



2 FORECASTS WITH KNOWN PARAMETERS

2.1 Model and System Forecast

e Model: m-variate VMA (oco) Model

(1—-—L)yyy=p+C(L)ey = p+ Z Ciet—i
i=0
where L is the lag operator,
Yi = [Y12-Y2t5 -+s Ymt]'

p is a vector of constants,
C; is a m X m matrix with absolute summability of {sC,}2,

e¢ is a (m x 1) iid(0, X) process with finite fourth moments.

e Cointegration Rank is r
B is m X r cointegration matrix.
z; = [3'ys is zero-mean I(0) process, or

B'C(1) = 0.




e h-period Ahead Forecast

Yyr1p 1s expressed as
h h—t T h

Yyr+n = hp + Z Y Cieri4yr+) > Croije (2)
t=1 3=0

= t=1 j:l

The second term in the right-hand-side in the above expressions represents the future errors
which are unknown at time T'.

The (cointegrated) system forecast or the optimal forecast is given from (2)

T h
grin = hp+yr+ Y > Croyyje (3)
t=1 j=1
The forecast error is obtained:
h h—t
€rth = YT+h — YT+h = Z Y Cierys (4)

§=0
They show that the trace MSE of ér., diverges as h goes to oo:
trace MSE(éry,) = trace(E(érynéy,,)) = O(h). (5)



® Accuracy Measure

Accuracy measure: trace MSE
trace MSE = trace(E(ng)rhng)r'h))
where eg,‘?J)rh is the forecast error of the h period ahead of the j-th method.

Our Criteria for Comparison:

Relative accuracy of forecasts: trace MSE ratio
trace MSE(e;zJ)rh
trace MSE(e;lJ)rh ,

where ng)rh is the forecast error of the j-th method.



2.2 Comparison with Other Forecasting Methods

An alternative forecating scheme y}r 45 1s expressed as

Yrin = 91 + (Y7 — UT41); (6)
where (y; +n — Yr4n) is the difference between an altenative scheme yr:,t 4, and the optimal
forecast yrip.

Its forecast error is given by

etin = Yr+h — Ypn = Yrih — {9100 + (Ygpn — Ir4n)} = érn — (Ygypn — Jrn)-  (7)

In general, we have
trace MSE(y7., — 97+rn) = O(1) = o(h).

Thus, we have

_ trace MSE(G;Jrh)
lim - =
h—oo trace MSE(ér4)




For example, yr:,t 15 includes

(a) Engle and Yoo’s (1987) forecast from an unrestricted VAR (UVAR),
(b) Cristoffersen and Diebold’s (1998) forecast from a univariate ARIMA model, and

(c) y’:lt-|-h = Yr-

Obviously, yr satisfies neither cointegration nor integration.

Neither cointegration nor integration matters in the long-run.



3 FORECASTS WITH ESTIMATED PARAMETERS

e Denote some estimators of p and C; (2 =0,1,...) as p* and C} (¢ = 0,1,...), respectively.
e Suppose that p* is a consistent estimator of p and Var (p*) = O(1/T).

e Estimators C} (i=0, 1, ...) are not necessarily consistent estimators of the corresponding
C; (i=0, 1, ...).

Thus, we may note that C — C; can be O(1) for any <.

We now denote forecasts with the estimated parameters with superscript *.

For example, we denote the cointegrated system forecast with the estimated parameters pu*
and C; (i=0, 1, ...) as y7._, is given as follows:

T h
Ypon =hu* +yr+> > Cr_, e

t=1 5=1



Its forecast error is given as
h h—t
€rpn = Yr+h = Yppp = (10— 1)+ ) ) Clerwi+ Z Z(CT t+5 — Cr_yy ;)€
t=1 j=0 t=1 j=1
=P+ Q+ R. (say)

We find taht E[QP’] = E[QR’] = 0, since Q consists solely of future errors and is uncorrelated
with P and R. We further note that, for given T,

E[PP'] = MSE[u*]h* = O(h?),
E[QQ'] = E[RR'] = O(h), and
E[PR'] = O(h).

The first term in the right-hand-side P = (u — p*)h, the error associated with estimation
of u, is dominant for given T'.

As h goes to infinity, the trace MSE of e}, is now given by
trace MSE(e., ) = trace(E(ey ,en.,)) = MSE[u*]h?.



Proposition: Suppose that 6%)_2 and eg,?}:;b are forecast errors of two different estimation

methods. Let pV* and p?* be their estimators of w, respectively. Then, we have, for given
T,

. trace MSE(e?EL trace MSE[p(2)*]

im —

h—0 trace MSE(ng):;L - trace MSE[p(1)*]’

Remarks:

e The relative accuracy of long-term forecasts with estimated parameters depends upon the
relative MSEs of drift estimators.

e It is interesting to note that the ratio never explodes nor conveges to zero.

e It should be noted that the above result is valid as long as the drift is estimated, even
when the true p is zero.

e It is important to realize that the estimation error of the drift term is crucial for long-term
forecasts.
= Neither cointegration nor integration matters in the long-run, when the paremeters of
the model are estimated.

10



4+ MONTE CARLO EXPERIMENTS:

How Forecasts Perform When Prediction Horizon Increases

41 The Monte Carlo Design
As a DGP, consider a simple bivariate cointegrated process as follows:

Ay = af'yi—1 + m + ey,

where a, 3 and m are specifically given as
_ [-0.4 _Joa1 _ [o.24
a=101|*F=|—02[ ™ |0.24]
and e; ~ ¢.t.d.N (0, I5). Note that the constant (drift) term m is added here.

It can be expressed as a bivariate vector autoregressive (VAR) model:
Yt = Ayi—1 + m + &y,
where A = I, + af3’.

We may note that Ay, can be also be expressed as M A(oco) process.

Ayt = u—+ C(L)Et = u+ Z Ciet—ia

1=0
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where C(L) = Y2 C;L", Cy = I, C; = A" — A" (i = 1,2,---), p = [p1, p2)) = Cm, and
C = C(1) = Bo(a/ B1)'a/,. (See Johansen (1995) for derivation of the moving average
representation of Ay; above.)

In the numerical example, we have
p = [p1, p2] = [0.4, 0.2]".

Throughout our experiment, we set the sample size to 100 and 200, and the number of
replications is 4000.

12 Experimental Results (Model is correctly specified)

We denote the estimated parameters wirh superscript *.
(i*) The cointegrated system forecast (SYS*), 97, :
The cointegrated system forecast of y; , with estimated parameters is given by
Upip = Alyr + p(h),
where where ji(h) = (I, + A+ A2 + ... + A(=D)pp,

12



Here, the parameters of the VEC model, &, ,8 , and m are estimates by Johansen’s maximum
11ke11hood procedure, and we have A = I, + &43'.

Here, we assume that the cointegration rank and the lag length of the model are a priori
known.

In this case we have ji = Cir where C = B, (&' 81) '@
(ii*) [The approximate cointegrated system forecast (APPROX*), 47, ,:

The approximate cointegrated system forecast with estimated parameters is given by
?j;_,_h — AhyT + hp,
where, since E(Ay; = p) (See Johansen (1995)), i is directly obtained by

ﬁ:T_leyt-

(iii*) The univariate ARIMA forecast (ARIMA*), g7, ,:

For an individual series, we can make forecasts from ARIMA(r,1,s) models, denoted as
Yirn:

13



We fit an ARMA (7, s) model for an individual series of Ay; — g (t =2,3,.-. ,T), where
£t is defined above.

The orders of » and s are determined by SBIC for each replication.
(iv*) The misspecified forecast (MISS*), ﬁ}HL :

This is the forecast from simple trend models, denoted as ;&} int

:éiqq_h — ¢31 + lil (T + h), and
:é;,T—l—h = ¢2 + 4i2(T + h),

A

where ¢ = [(;31, q132]’ and fi = [fi1, ﬁz]’ are estimated by the OLS estimation of the following
models;

Y1+ = ¢1 + pit + error, and
Y2, = @2 + pot 4 error.
(v) The idle forecast (IDLE), giip:

The idle forecast is defined as, regardless of the forecast horizon h,
Jern = [120, 60]'.

14



We consider the following four trace MSE ratios:

trace MSE(€e7, ;)
trace MSE(é}, ’
trace MSE(ey,
trace MSE(é%_ ;)
trace MSE(é}Jrh
trace MSE(é%., ,,)’
trace MSE(ér.p)
trace MSE(é, ,,)’

ratio(APPROX™) =

ratio(ARIMA™) =

ratio(MISS™) = and

ratio(IDLE™) =

where €7..,, €., €., €., and éry;, are the forecast errors of forecasts (i*), (ii*), (iii*) ,
(iv*), and (v), respectively.

Experimental Results when T' = 100

Figure 2(a) shows ratio(APPROX*), ratio(ARIMA*) and ratio(MISS*) plotted against fore-
cast horizon h.

15



Trace MSE Ratios When Paremeters Are Estimated (7' = 100)

Figure 2
@) _(b)

' — ratio(ARIMA®)
~F - — ratio(MISS®) 1 |
ratio(APPROX*) | | N‘ ---  ratio(IDLEY)

— e,
= e,

Note:
“ratio(APPROX*)”: Trace MSE ratio of APPROX* to SYS*,

“ratio(ARIMA*)” : Trace MSE ratio of ARIMA* to SYS*,
“ratio(MISS*)” : Trace MSE ratio of MISS* to SYS*, and
“ratio(IDLE*)” : MSE ratio of IDLE to SYS*.

In this figure, we can see that they intially larger than unity for small h. That is, the
cointegrated system forecast with estimated parameters is best for short-term forecasts.

However, next, they uniformly decrease below unity as h becomes large.

16



The approximate cointegratesd system forcast (APPROX*), the univariate ARIMA forcast
(ARIMA*), and the misspecified forecast (MISS*) are better than the cointegrated system
forecast (SYS*) in the long-run.

Actually, we have, for h = 1000,
ratio(APPROX") = 0.635
ratio(ARIMA™) = 0.581
ratio(MISS*) = 0.702

Table 1 shows that diagonal elments of Var[ji] in APPROX* and ARIMA* and Var[fi] in
MISS* are smaller than those of Var[fi] in SYS*.

Table 1: Mean and Variance of Drift Term p (7' = 100)

True | mean of [ variance of | mean of (var. ratio of | mean of [ var. ratio of
p |p=Cm  p=Cm) 1 ft and A0 i ft and f2)
0.4 0.391 [10.04610 0.400 [10.4530 0.398 [J0.3720
0.2 0.193 [10.01120 0.200 [10.5900 0.200 [10.5030

This may happen because we have to estimate many prameters in the case of a VEC model
and it gives large variability on the ML estimators. (Note that, asymptotically, &1 and g have
the same variance (Johansen,1995, Th.13.7)).
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The result conforms with Proposition 2, which states that the trace MSE ratio converges
to trace Var ratio of estimators of u.

While we have been concerened wth long-term forecasts, our result is also infomative on
the medium-term forecasts, say, h = 15 ~ 50. Actually,

ratio(ARIMA*)< 1 for h > 35.

Figure 2(b) shows ratio(IDLE*) plotted against horizon h.

We have
ratio(IDLE") = trace M SE(éryn)/traceM SE(éy,
~ (u? + p2)(T + h)?/trace VAR|[a]h?

h—oo

222 (42 + p3)/trace VAR
— constant.
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4.3 Case Where A Cointegrated System Model Is Misspecified
We now cosider a VEC model with MA errors:

Ay; = af'yi—1 + m + Pe;_y + &, and

0.5 0
‘I’Zlo 0.5]’

where a, B, m and e; are the same as in (4.1).

We evaluate five forecasts, SYS*, APPROX*, ARIMA*, MISS*, and IDLE* as in the previous
subsection.

Here, we may note that the VEC model is estimated with p = 1 as a misspecification.
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Figure 4 Trace MSE Ratios When Model Is Misspecified (T'=100)
G N S ()

' — ratio(ARIMA®)
~p - — ratio(MISS®) 1 . ‘
ratio(APPROX*) | | =

- ratio(IDLE")

Experimental Results When T' = 100

Figure 4(a) shows ratio(APPROX*), ratio(ARIMA*) and ratio(MISS*) plotted against fore-

cast horizon h.

We can see that they decrease faster than those in Figure 2(a).

That is, the dominace of the approximate cointegratesd system forecast (APPROX™*), the
univariate ARIMA forcast (ARIMA*), and the misspecified forecast (MISS*) over the coin-
tegrated system forecast (SYS*) is more apparent in the long-run.
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Actually, we now have, for h = 1000,

ratio(APPROX™) = 0.332
ratio(ARIMA™) = 0.259
ratio(MISS*) = 0.314

They are much smaller than those in those in the previous subsection.

Table 3 shows means and variances of i, ﬁ and f&.

Table 3: Mean and Variance of Drift Term u When Model Is Misspecified

True | mean of [ variance of | mean of (var. ratio of | mean of [ var. ratio of
p |p=Cm  p=Cm) [t ft and fi0] i ft and f2)
0.4 0.424 [14.0200 0.399 [J0.1170 0.397 [1 0.00958[]

0.2 0.181 [J0.386L1 0.199 [10.3810 0.200 [10.03260

Variances are all larger than those in Table 1. Apparently, i is most affected by the
misspecification compared to other two estimators.
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It is interesting to note that for ratio(ARIMA*) we have

ratio(ARIMA™) = 0.941 (h = 20),
ratio(ARIMA™*) = 0.884 (h = 30),and
ratio(ARIMA™) = 0.797 (h = 50).

Namely, ARIMA* is noticeably better than SYS* for medium-term forecasts, say, h = 20 ~
50.

Actually, ARIMA* almost unifromly dominates SYS* for all A in this case.

Since in practical situations, the msspecification is likely to occur, we recommend to use
ARIMA?* because of its simpleness and robustness.
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5 CONCLUSION

Known Prameters:

e Neither cointegration nor integration matters in long-term forecasts.

Estimated Prameters:

e Accuracy of the estimation of the drift term is crucial in long-term forecasts. Again,
neither cointegration nor integration matters in long-term forecasts.

e Namely, the relative accuracy of various long-term forecasts depends upon the relative
magnitude of MSEs of estimators of the drift term.

e The univariate ARIMA forecast whose drift term is estimated by the simple time average
of differenced data, is better than cointegrated sytem forecasts whose parameters are esti-
mated by the conventional Johansen’s maximum likelihood.

e The dominance of the univariate ARIMA forecast over the cointegrated system forecasts

can happen even in medium-term forecasts, say, h = 20 ~ 50. Our result is informative on
medium-term forecasts.
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