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1 Motivations of Study

1. Recently a considerable interest has been paid on the estimation problem of
the realized volatility by using (ultra)high-frequency data. Several statistical
methods have been developed by Anderson, T.G., Bollerslev, T. Diebold, F.K.
and Labys, P. (2000 JASA), Gloter and Jacod (2001), Ait-Sahalia, Y., P.
Mykland and L. Zhang (2005), Zhang, L., P. Mykland and Ait-Sahalia (2005),
and Barndorff-Nielsen, O., P. Hansen, A. Lunde and N. Shepard (2006).
Many of existing methods are rather complicated with micro-market noise.

2. Our aim is to develop a simple (non-parametric) estimation method for
practical applications with micro-market noise. We have proposed a new
estimation method called SIML : Separating Information Maximum Likelihood
method in Kunitomo and Sato (2008a,b, 2010a,b)* ; Unpublished Discussion
Papers : CIRJE-F-581,601,733 (http://www.e.u-tokyo.ac.jp/cirje/research/),
and a forthcoming Paper : Kunitomo and Sato (2010b), Mathematics and
Computers in Simulations, Elsevier.

3. We shall show that the SIML estimator has the consistency and the



asymptotic normality even when the noises are autocorrelated, and the
efficient price process is endogenous, i.e. it can be correlated with the noise
term. Besides, it has reasonable small sample properties.



2 SIML: Separating Information Maximum
Likelihood) estimation

Let y;,; be the +—th observation of the j—th (log-) price at ¢} for

1=1,--- n;3=1,--- ,p;0=¢ <t} <--- <t" =1. We set

y; = (yi1, -+ ,¥ip) bea px1vector and Y, = (y;) be an n x p matrix of
observations. The underlying continuous process x; at t (¢ =1,---,n) is
not necessarily the same as the observed prices and let v, = (v;1,- - ,v;p) be

the vector of the additive micro-market noise at ¢!*, which is independent of

X;. Ihen we have

Yi = X; +V;

where v; are a sequence of independent random variables with £(v;) = 0 and

/

E(v;v;) = X,. In this paper we focus on the equi-distance case with
hy =17 —t7  =1/n(i=1,---,n).



We assume that
'
X = Xp —I-/ ng)dBS (O <t< 1),
0

where B is a ¢ x 1 (¢ > 1) vector of the standard Brownian motions, and
c\” = (cg‘?(s)) is a p X ¢ matrix which is progressively measurable in

0, s] x Fs and predictable. We write the instantaneous diffusion functions
»(@) (= (aﬁ)(s))) - c@cl® (F, is the o—field generated by {B,,r < s}).

The problem is to estimate the quadratic variations and co-variations

1
e = (04) = /O %" ds

of the underlying continuous process {x;} and also the variance-covariance
Yy = ( (v )) of the noise process from the observed discrete time process

yi (1 = 1, -++,n). We use the notation that a( )( ) and aéh) are the (g, h)-th

element of ng) and X, respectively.

In this paper three different situations on the instantaneous covariance
function shall be considered. (i) When the coefficient matrix is constant, (i.e.



cl”) = C(®)), we call the standard case or the simple case. (ii) When the
coefficient matrix is time-varying, but it is a deterministic function of time
(Cgm)), we call the deterministic time-varying case. (iii) When the coefficient
matrix is time-varying and it is a stochastic function of time (ng)), we call
the stochastic case. We write the conditional covariance function of the
(underlying) price returns without micro-market noise as

t;
E|(xi —x—1)(x — Xz’—l),\]‘—n,i—l} = / > ds |
¢

1—1

which corresponds to —zﬁf) — 1C§x) C( ) , where x; — x;_1 is a sequence

1—1 n 17—

of martingale differences, (*) are the tlme—dependent (instantaneous)
conditional variance and F,, ;_1 is the o—field generated by x; (j <i—1)
with (2.2) and v, (j <4 —1). More generally, as n — oo we can consider the
situation that the (true) realized covariance of the returns

1 o (s 1
=N = —>§3x:/ »@)ds
n g 0

1=1



which is a deterministic and constant matrix, Egp) is the (fixed) initial
condition and we assume supy<.<; [|Z@|| < oo (a.s.) for the instantaneous
covariance function.

The Standard Case

We first consider the situation when x; and v; (i = 1,--- ,n) are independent
with 225’3) =3, (0 < s <1), and v; are independently, identically and
normally distributed as N,(0,X,). Given the initial condition yy,

Yn ~ NnXp <1n ) Y{),In ® 23'v + CnC;L ® hn2w> )

where 1. = (1,---,1), by, =1/n (=t —t"_,) and

(

(1 0 -~ 0 0)

1 1 0 0
C.=|1 1 1 0
1 11 0

\ 1 1 1 1)



c.'c'=P,D,P, =2I, — 2A,, ,

2n-+1

P, = (pjr), pjx = /ni% COS {W(S,’ij)(] - %)] . We transform Y, to
Zy, (= (Z;c>) by

where D,, is a diagonal matrix with dj = 2 [1 - COS(?T(Qk_l))] , and

Zn = h V2P, C (Y, — Yo)

where Yy =1, - yé . The likelihood function under the Gaussian noise is
given by

1, »
1 \" " {——zk(aknEU—FZx) zk}
- () 1 e ‘

where a, = 4n sin’ [g (gfbﬁ)] . Hence the maximum likelihood (ML)

estimator can be defined as the solution of maximizing

n

n 1 .
Ln(0) =) loglaga Sy + 2|77 — > Y zlarn Sy + o] 'z



From this representation we find that the ML estimator of unknown
parameters is a rather complicated function of all observations in general
because each ay,, terms depend on £ as well as n. Let denote a, , and then
we can evaluate that ay,, , — 0 as n — oo when k, = O(n®) (0 < a < 3)
since sinx ~ x as ¢ — 0. Also a,4+1-1, n = O(n) when

[, = O0(nP) (0 < B <1). When k, is small, we expect that ay,, ,, is small
and we approximate 2 x L,,(0) by

LM(0) = —mlog B — > 2,3 "z .
k=1
Then the SIML estimator of 32, is defined by
. 1 <&
Yy = — ZLZy, -
My
k=1

On the other hand, when [,, is small and k,, = n + 1 — [,,, we expect that



an+1—1, n is large and then we approximate 2 x L, (0) by

n n

L,(f)(é’):— Z log |ag,Xy| — Z z;c[aknE,U]_lzk.
k=n+1—1 k=n+41-1

Then the SIML estimator of 2(1;) is defined by

. 1 i ,
Do = T Z a,;nlzkzk :
" k=n+1-1,
For both ﬁ]v and ZAL,;, the number of terms m,, and [,, should be dependent

on n. We need the order requirements that m,, = O(n®) (0 < @ < 1) and
I, =0(nP) (0 < B<1)for X, and X, respectively.

Since we use a linear transformation, we alternatively write

n

6-](3;) = Z Cij (Wi — Yri=1)Yg; — Yg,5—1) 5

i,J=1



where s, = cos [2511(]' - (k- %)] and

moy
2
C.- p— —_— S.ks .k
17 o E 1k95k
k=1

1 <& 27 1 27
_ 1 iy L |
mnkzl{cos [2n—|—1(2+] ) 2)]+COS[2n+1




3 Summary of Asymptotic Properties of the
SIML

We summarize the asymptotic properties of the SIML estimator when the
sample size n is large. Kunitomo and Sato [2008a,b] have investigated the
problem and have shown that the SIML estimator is consistent and it has the
asymptotic normality under a set regularity conditions. For simplicity, we
consider the scalar case and write y¢; = x¢; + vy (0 =1,--- ,n) in the
discrete time setting (and ys., € r¢, vy in the continuous setting) and write

t
xft:xfo—l—/ cIHaBy).
0

Then the SIML estimator is

mp

~(z) 1 2
9fF = m—zsz )
" k=1



where z¢, (k=1,---,m,), correspond to the transformed data for the
returns yr; — yfi—1 (¢ =1,---,n). Then as n — o0

&) ()
65 —ofp —0
with m, =n® (0 < @ < 1/2) and
5 _ ;@) ()72
VMp |Gpf —0¢; 2 N (0 ,2[0 ]
with m?2 /n? — 0.

Although the SIML estimation was introduced under the Gaussian process
and the standard model, it has reasonable finite sample properties as well as
asymptotic properties under some volatility models and the non-Gaussian
processes with

t;
& [(xfi - xf,¢—1)2\]:n,1:—1] =/ ](ca;c)( )ds
ti—1
or

—Za“‘) 11— o) = [ o



As n — 00, under a set of regularity conditions, the asymptotic distribution
of the SIML estimator can be summarized as

Vi |65 = o S N o, v]

provided that we have the convergence of the asymptotic variance

Vo= 2 [/01 a;ﬁ)(s)ds]

n t t
+2 plim,, . Z (mncfj —1) [/t O';:;)(S)dS] [/ g;f)(s)dsl

i,j=1 i1

2

and it is a positive constant when m? /n? — 0 (as n — o0). When V is a
random variable, the convergence is in the sense of stable convergence.



4 Asymptotic Robustness of SIML

There is a natural question on the finite sample properties of the SIML
estimation when the underlying assumptions are not valid, in particular when
the micro-market noises are autocorrelated and endogenous.

Let zfi) and zﬁ) (¢ =1,---,n) be the i-th elements of

z,(zl) — h;1/2P;,LC,:1(Xn —¥o) , z,(f) — h;l/zP;zcglvn,

respectively, where x{) = (2 44), vil) = (vfi) and z,, = (2i,) are n x 1



vectors with z;, = zfi) + zz(fb) Then we use

. L .
\/’”T{ ;f)_(’;f)] = Vi mzzinaﬁf)]

1)2 T
i | S o)

Z E z,(f)Q

1 2)2 2)2 1 o[ (1) (2
+\/m—n2[zzin) — Elz) ]}+2\/T—n2{zz(wgzzig] -

k=1 k=1

Then we shall investigate the conditions that three terms except the first one
are 0,(1). It is because we could estimate the realized volatility consistently
as if there were no noise term in this situation.

Let by = e, P, C.' = (b;) and e, = (0,---,1,0,---) be an n x 1 vector.
) =577 | byjug; and notice that 327 byiby = 6(k, K )ag.

Also we shaII use the notation that K; (i > 1) are some positive constants.
First we impose the condition

We write h

(1) Efive] =ep" 7 (0<p<1),



where ¢; Is a constant.
For instance, we use

1 1 . 2k — 1
m—nZakn = m—nQnZ [1—COS(7T2n+1)]
k=1 k=1
2mn 2
sin 7
— 2 lom, — il | O(n)
M Sin 75 n

Then the second term becomes

2 1 my/?
—Zgzl(m) K172akm20( n )7
VI =1

which is negligible if 0 < a < 0.4. For the third term, we need to consider the

variance of

2)2 2 2
2w — Elzin Z buibe gt |visvgy = E@rsog)]

j_l



and we impose the additional condition

(II> g [(Ufivf,i/ — g(vfivf,il>)(vf,i” ’Uf,z./// — g(’l}f,i// vf,i’”))]
= = 1 = (0 < p < 1)

where ¢y is a constant. The condition (Il) is satisfied for the (weakly
dependent) linear processes on {vy,} with bounded 4th order moments.

Theorem 1 : Assume Conditions (l) and (II), the moment condition that
£(v$;) are bounded, and 0 < a < 1/3 for m,, = O(n®). Then the asymptotic
distribution is asymptotically (m,,,n — co) equivalent to that of

my, 1)2 T
vMn | (1/my,) kzlz,gn) —a;f) .

In our derivation the only term involved in the correlation of noise and signal
is the fourth term. and then it is interesting to find the condition that they
can be ignored for estimating the realized volatility and covariance. Then the



sufficient condition we need is

!/

(T) Elpvpilri k=1, 0] =cspy 7 (0< p1 <1) as.,

where c3 is bounded.

/

Theorem 2 : Instead of Condition (I) in Theorem 1, assume Conditions (I)
and (II), 0 < a < 1/3 for m,, = O(n®), and relax the independence
assumption between the signal term {z¢;} and noise term {vs;}. Then the
results of Theorem 1 hold.



5 Simulations

For the illustrative purpose, we give two Tables when the micro-market noises
have MA(1) structure. Although MA(1) (the 1st order moving average
process) is a simple stochastic process, the results of Tables 6 and 7 indicate
the general properties of the SIML estimation. We note that if we knew the
true process MA(1) in advance, it is certainly better to use the maximum
likelihood (ML) estimation which should be efficient, but we had experiments
for the situations when we do not have such information on the noise process.

Second, we give one table when the micro-market noise is correlated with the
true price process. There can be many possible ways to formulate the
dependence structure between the micro-market noise and the efficient
market prices. As a representative example, we give some results when the
current market noise depends on the innovation of impact of the efficient
market price process at the same period and the market noise term has the
MA(1) structure. The SIML estimation gives reasonable and stable results
even in this situation. (Kunitomo and Sato ( 2010a)).



Table 6 : Estimation of Realized Volatility (MA(1) noise, a = 0.5)

(z)

(v)

(z)

(v)

(z)

(v)

n=300 Ty Ty H-vol Ty Y H-vol Y. Y.

true-val 2.00E-04  2.00E-06 2.00E-04  2.00E-07 2.00E-04  2.00E-09
mean 2.03E-04 3.53E-06 1.87E-03 | 2.03E-04 5.18E-07 3.68E-04 | 1.99E-04 1.86E-07
SD 9.62E-05 5.12E-07  1.99E-04 | 9.69E-05  7.45E-08 3.21E-05 | 9.35E-05  2.69E-08
MSE 9.27E-09  2.61E-12 9.40E-09 1.07E-13 8.74E-09  3.44E-14
AVAR 8.17E-09  8.34E-14 8.17E-09  8.34E-16 8.17E-09  8.34E-20
n=5000 Jgf;) Jsf}) H-vol Jgf;) agf}) H-vol J;xf) agf})

true-val 2.00E-04 2.00E-06 2.00E-04  2.00E-07 2.00E-04  2.00E-09
mean 2.04E-04 3.52E-06 2.82E-02 | 2.00E-04 3.62E-07 3.00E-03 | 2.00E-04 1.38E-08
SD 5.27E-05 1.63E-07 7.61E-04 | 5.12E-05 1.69E-08 7.94E-05 | 5.09E-05 6.45E-10
MSE 2.79E-09  2.35E-12 2.62E-09 2.65E-14 2.59E-09 1.39E-16
AVAR 2.65E-09  8.79E-15 2.65E-09 8.79E-17 2.65E-09  8.79E-21
n=20000 0;9;) 0;1}) H-vol 0;9;) O';Uf) H-vol O';xf) O';Uf)

true-val 2.00E-04 2.00E-06 2.00E-04  2.00E-07 2.00E-04  2.00E-09
mean 2.05E-04 3.56E-06 1.12E-01 1.98E-04 3.57E-07 1.14E-02 | 2.00E-04 6.09E-09
SD 3.95E-05 9.59E-08  1.53E-03 | 4.00E-05 9.58E-09 1.54E-04 | 3.92E-05 1.62E-10
MSE 1.58E-09  2.43E-12 1.61E-09 2.48E-14 1.54E-09 1.67E-17
AVAR 1.52E-09  2.90E-15 1.52E-09  2.90E-17 1.52E-09  2.90E-21




Table 7 : Estimation of Realized Volatility (MA(1) noise, a = —0.5)

n=300 0;3}) 0;1}) H-vol 0;3}) a;vf) H-vol a;xf) a;vf)

true-val 2.00E-04  2.00E-06 2.00E-04  2.00E-07 2.00E-04  2.00E-09
mean 2.07E-04  8.40E-07 9.17E-04 | 2.02E-04 2.47E-07 2.71E-04 | 2.02E-04 1.82E-07
SD 9.50E-05 1.25E-07  8.22E-05 | 9.65E-05  3.65E-08 2.26E-05 | 9.40E-05 2.66E-08
MSE 9.24E-09  1.36E-12 9.32E-09  3.53E-15 8.83E-09 3.33E-14
AVAR 8.17E-09  8.34E-14 8.17TE-09  8.34E-16 8.17E-09  8.34E-20
n=5000 Jgf;) Jsf}) H-vol Jgf;) agf}) H-vol J;xf) agf})

true-val 2.00E-04  2.00E-06 2.00E-04  2.00E-07 2.00E-04 2.00E-09
mean 2.05E-04 4.96E-07 1.22E-02 | 2.02E-04 5.89E-08 1.40E-03 | 2.00E-04 1.08E-08
SD 5.21E-05 2.34E-08 2.75E-04 | 5.30E-05 2.81E-09 3.10E-05 | 5.29E-05 4.88E-10
MSE 2.75E-09  2.26E-12 2.81E-09 1.99E-14 2.79E-09 7.71E-17
AVAR 2.6bE-09  8.79E-15 2.65E-09 8.79E-17 2.65E-09 8.79E-21
n=20000 0;9;) 0;1}) H-vol 0;9;) O';Uf) H-vol O';xf) O';Uf)

true-val 2.00E-04  2.00E-06 2.00E-04  2.00E-07 2.00E-04 2.00E-09
mean 2.06E-04  4.52E-07 4.82E-02 | 2.01E-04 4.75E-08 5.00E-03 | 2.01E-04 2.99E-09
SD 4.01E-05 1.23E-08 5.47E-04 | 3.84E-05 1.26E-09 5.58E-05 | 4.01E-05 8.07E-11
MSE 1.64E-09 2.40E-12 1.48E-09 2.33E-14 1.61E-09  9.88E-19
AVAR 1.52E-09  2.90E-15 1.52E-09  2.90E-17 1.52E-09  2.90E-21




Table 8 : Estimation of Realized Volatility (MA(1) and Endogenous noise, a = 0.5, p = 0.5,1 = 0)

2

2

2

2

2

2

n=300 o o, H-vol o o, H-vol o o,

true-val 2.00E-04  2.00E-06 2.00E-04  2.00E-07 2.00E-04 2.00E-09
mean 2.01E-04 2.55E-06 1.35E-03 | 2.04E-04 5.68E-07 3.81E-04 | 1.99E-04 2.05E-07
SD 9.55E-05  3.79E-07 1.44E-04 | 9.55E-05 8.31E-08 3.50E-05 | 9.29E-05 3.02E-08
MSE 9.11E-09  4.48E-13 9.14E-09 1.42E-13 8.63E-09 4.23E-14
AVAR 8.17E-09  8.34E-14 8.17E-09  8.34E-16 8.17E-09  8.34E-20
n=5000 o2 o2 H-vol o2 o2 H-vol o2 o2

true-val 2.00E-04 2.00E-06 2.00E-04  2.00E-07 2.00E-04  2.00E-09
mean 2.01E-04 1.95E-06  1.55E-02 | 2.01E-04 2.44E-O7 2.00E-03 | 2.01E-04 1.78E-08
SD 5.21E-05 9.14E-08 4.20E-04 | 5.14E-05 1.13E-08 5.24E-05 | 5.18E-05 8.43E-10
MSE 2.72E-09  1.09E-14 2.64E-09 2.03E-15 2.68E-09 2.51E-16
AVAR 2.65E-09  8.79E-15 2.65E-09 8.79E-17 2.65E-09 8.79E-21
n=20000 0926 03 H-vol 0'92@ 03 H-vol O'i 03

true-val 2.00E-04  2.00E-06 2.00E-04  2.00E-07 2.00E-04 2.00E-09
mean 2.00E-04 1.87E-06 5.87E-02 | 2.00E-04 2.10E-07 6.60E-03 | 1.99E-04  7.25E-09
SD 4.03E-05 5.12E-08  8.14E-04 | 3.92E-05 5.60E-09 8.82E-05 | 3.87E-05 1.96E-10
MSE 1.63E-09 1.98E-14 1.54E-09 1.22E-16 1.50E-09 2.76E-17
AVAR 1.52E-09  2.90E-15 1.52E-09  2.90E-17 1.52E-09 2.90E-21




Data generating process:
yr =zt +/02/(1 + a?)v,
Ty = Tt—1 + \/%Ut
Vi = € — Q€L_1
et = (1 — p)we + put—;
uy ~ 1.5.d.N(0,1), ws ~ 4.2.d.N(0, 1)




6 Conclusions

1. The SIML estimator is simple and it has reasonable statistical properties.
2. We show the asymptotic robustness of the SIML estimator by simulations.
We have compared SIML with the realized kernel method by Bandorff-Nielsen
et al. (2008), which needs the information variance-ratio for determining the
bandwidth parameter in advance.

3. The SIML estimator is also simple and useful for multivariate high
frequency series.

4. We have applied the SIML method to the Nikkei-225 futures and spot
indexes with the realizing hedging problem, which are major stock indexes in
Japan.
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