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Introduction

Present statistical regular

sub-pavings as an efficient,
data-driven, multi-dimensional
data-structure for non-parametric
density estimation of massive data
sets;

Apply our methods to earthquakes
in NZ, weather and aircraft
trajectories over a busy US airport
and samples simulated from
challenging multi-dimensional
densities, including Levy and
Rosenbrock.

Figure: Shape of a Levy density with 700
modes.
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Intervals and Boxes in R
d

Intervals and Boxes as interval vectors:

x = [x1, x1] × [x2, x2] × . . . × [xd , xd ] , x i ≤ x i .

1-dim. 2-dim.
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3-dim.

Figure: Boxes in 1D, 2D, and 3D.
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Binary Tree Representation

These boxes can also be represented by ordered binary trees.
An operation of bisection on a box is equivalent to performing the
operation on its corresponding node in the tree, i.e.:
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Figure: Bisecting a box or its equivalent node.

Teng, Harlow and Sainudiin Adaptive Histograms from SEB-based PQ



Statistical Regular Sub-pavings (SRSPs)
Adaptive Histograms
Arithmetic on SRSPs

Application
Conclusion

Intervals and Boxes
Regular Sub-pavings (RSPs)
Statistical Regular Sub-pavings (SRSPs)

Regular Sub-pavings (RSPs) (Jaulin et. al., 2001)

A sequence of bisections of boxes;
Start from the root box;
Along the first widest dimension.

Figure: A sequence of bisections on root box X to produce a 4-leafed
RSP s.
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The Space of All Possible RSPs

The number of distinct RSP with i splits is equal to the Catalan
number:

Ci =
1

i + 1

(
2i

i

)
=

(2i)!

(i + 1)!(i !)
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Statistical Regular Sub-pavings (SRSPs)

Extended from the RSP;

Caches recursively computable
statistics at each box or node as
data falls through;

These statistics include:

the sample count;
the sample mean vector;
the sample variance-covariance
matrix;
and the volume of the box.

Figure: Caching the sample count in
each node (or box).
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S.E.B. Priority Queue

SRSPs as Adaptive Histograms

The histogram estimate of i.i.d. random variables X1,X2, . . . ,Xn in
R

d with density f is given by:

f̂n(x) =
1

n

n∑

i=1

IXi∈x(x)

vol(x)

x(x): the leaf box x that contains x vol(x): volume of box x

Figure: A SRSP
as a histogram
estimate.
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S.E.B. Priority Queue

A Prioritized Queue based Algorithm

Algorithm SplitMostCounts

As data arrives, order the leaf boxes of the SRSP so that the leaf
box with the most number of points will be chosen for the next
bisection.
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S.E.B. Priority Queue

A Prioritized Queue based Algorithm

Algorithm SplitMostCounts

As data arrives, order the leaf boxes of the SRSP so that the leaf
box with the most number of points will be chosen for the next
bisection.

Split the root box.

z
ρ

10

X

r

r
r

r
r

r

r

r

r

r

�
�

�z

@
@

@z

RL

5 5

XL XR

Teng, Harlow and Sainudiin Adaptive Histograms from SEB-based PQ



Statistical Regular Sub-pavings (SRSPs)
Adaptive Histograms
Arithmetic on SRSPs

Application
Conclusion

S.E.B. Priority Queue

A Prioritized Queue based Algorithm

Algorithm SplitMostCounts

As data arrives, order the leaf boxes of the SRSP so that the leaf
box with the most number of points will be chosen for the next
bisection.

Two or more boxes with the most number of points?
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S.E.B. Priority Queue

A Prioritized Queue based Algorithm

Algorithm SplitMostCounts

As data arrives, order the leaf boxes of the SRSP so that the leaf
box with the most number of points will be chosen for the next
bisection.

Break ties by picking these boxes at random for the next bisection.
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S.E.B. Priority Queue

A Prioritized Queue based Algorithm

Algorithm SplitMostCounts

As data arrives, order the leaf boxes of the SRSP so that the leaf
box with the most number of points will be chosen for the next
bisection.

Keep bisecting till each box has less than or equal to kn number of
points (let kn = 3 here).
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S.E.B. Priority Queue

A Prioritized Queue based Algorithm

Algorithm SplitMostCounts

As data arrives, order the leaf boxes of the SRSP so that the leaf
box with the most number of points will be chosen for the next
bisection.

Final state
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S.E.B. Priority Queue

Some Examples

Figure: Histogram density estimates their corresponding sub-pavings for
the bivariate Gaussian, Levy and Rosenbrock densities.
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Choice of kn

Figure: Two histogram density estimates for the standard bivariate
gaussian density with different choices of kn. The histogram is
under-smoothed when kn is relatively smaller than n and over-smoothed
when kn is relatively larger.
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Adding and Averaging SRSPs

Perform a non-minimal union (or add sub-pavings) and adjust
counts:

n
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n
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n
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n
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Adding and Averaging SRSPs

Perform a non-minimal union (or add sub-pavings) and adjust
counts:
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Adding and Averaging SRSPs

Adding m histogram density estimates

m∑

i=1

f̂ (i) = f̂ (1) + f̂ (2) + f̂ (3) + . . . + f̂ (m)

=
(((

f̂ (1) + f̂ (2)
)

+ f̂ (3)
)

+ . . . + f̂ (m)
)

.
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Adding and Averaging SRSPs

Adding m histogram density estimates

m∑

i=1

f̂ (i) = f̂ (1) + f̂ (2) + f̂ (3) + . . . + f̂ (m)

=
(((

f̂ (1) + f̂ (2)
)

+ f̂ (3)
)

+ . . . + f̂ (m)
)

.

Averaging m histogram density estimate

f̂ =
1

m

m∑

i=1

f̂ (i)
.
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An Example

Figure: Histogram density estimates of the bivariate Levy using different
values of kn.
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An Example

Figure: The averaged histogram density estimate.
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An Example of Application

Example

Air Traffic Data (Link to SAGE server): interested in applying
SRSPs to the analysis of thunderstorm effects on aggregated
aircraft trajectories.
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Conclusions

We proposed an efficient, data-driven, multi-dimensional
data-structure, SRSPs, for non-parametric density estimation
of massive data sets;

The SRSP can be represented by a binary tree and can either
grow (through bisection of nodes) or be pruned (through
merging nodes) adaptively;

Arithmetic operations can be efficiently extended to these
data structures, i.e. averaging histograms.
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Thank you!
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