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Introduction The problem A simulation study A real data example References

Motivation

Example

Kalbfleisch and Prentice (1982)

TYPE OF TREATMENT PATIENTS % CENSORED
T1 (Radiotherapy) 100 27%

T2 (Radiotherapy + Chemotherapeutic agent) 95 27.37%
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Figure: Box-and-whisker plots of the survival times of the two groups of patients
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Motivation

Example

Interests:

• To study the effectiveness of both treatments independently

• To compare both types of treatments

Tools:

• Reliability measures

• Stochastic orderings
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Reliability measures

Definitions

Let X be the lifetime of an item or component and let Xt = [X − t|X > t] represents
its residual lifetime at time t > 0

Assume that X has an absolutely continuous distribution FX and a density fX

• The survival function of X is F̄X(t) = P (X > t)

• The hazard rate function of X is rX(t) =
fX (t)

F̄X (t)

• The mean residual life function of X is mX(t) = E[Xt]

• Fix γ ∈ (0, 1). The γ-percentile residual life function of X is the γ-percentile of
Xt; i.e.,

qX,γ(t) =

{
F−1
Xt

(γ), t < uX ;

0, t ≥ uX ,
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Reliability measures

Motivation

RELIABILITY MEASURES STOCHASTIC ORDERINGS

Hazard rate function HR order

Survival function ST order

Mean residual life function MRL order

Percentile residual life function γ-PRL, γ ∈ (0, 1)

Inference for the difference of two percentile residual life functions Alba Maŕıa Franco Pereira COMPSTAT, Paris, France 2010
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Stochastic orders

Definitions

Let X and Y be two absolutely continuous random variables with survival functions
F̄X and F̄Y , hazard rate functions rX and rY , and mean residual life functions mX
and mY , respectively

• X is said to be smaller than Y in the usual stochastic order, denoted by
X ≤st Y , if

FX(t) ≤ FY (t), for all t ∈ R
• X is said to be smaller than Y in the hazard rate order, denoted by X ≤hr Y , if

rX(t) ≥ rY (t), for all t ∈ R

• X is said to be smaller than Y in the mean residual life order, denoted by
X ≤mrl Y , if

mX(t) ≤ mY (t), for all t ∈ R
• Fix γ ∈ (0, 1). X is said to be smaller than Y in the γ-percentile residual life

order, denoted by X ≤γ−rl Y , if

qX,γ(t) ≤ qY,γ(t), for all t ∈ R
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Stochastic orders

Example
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Figure: Comparison of the mrl’s and merl’s of the patients undergoing T1 and T2
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Description and previous results

Description

Given γ, α ∈ (0, 1), X1, X2, . . . Xn and Y1, Y2, . . . Ym

how to construct a (1− α) · 100%-confidence band for qY,γ(t)− qX,γ(t)?

The empirical γ-percentile residual life function of X is

qX,n,γ(t) = Qn(γ + (1− γ)F̄X,n(t))− t, t < uX , 0 < γ < 1

where F̄X,n is the empirical survival of X and Qn is its sample quantile function:

Qn(x) =

{
Xk

(k−1)
n

< x ≤ k
n

(k = 1, . . . , n)

X1 x = 0

Inference for the difference of two percentile residual life functions Alba Maŕıa Franco Pereira COMPSTAT, Paris, France 2010
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Description and previous results

Previous results

Csörgo and Csörgo (1987)

• qX,n,γ(t) a.s.−→ qX,γ(t)

• n
1
2 fX(qX,γ(t) + t){qX,γ(t)− qX,n,γ(t)} d−→ N(0, 1)

Our methodology is based on

• Bootstrap techniques

• Statistical depth
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Description and previous results

Statistical depth

STATISTICAL DEPTH FOR MULTIVARIATE DATA

Measures the centrality of a d-dimensional observation with respect to a multivariate
distribution F or with respect to a set of d-dimensional points

Mahalanobis (1936) Tuckey (1975)
Oja (1983) Liu (1990)
Singh (1991) Koshevoy and Mosler (1997)
Fraiman and Meloche (1999) Vardi and Zhang (2000)
Zuo (2003)
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Description and previous results

Statistical depth

STATISTICAL DEPTH FOR FUNCTIONAL DATA

Measures the centrality of a function with respect to a set of functions

Vardi and Zhang (2000) Fraiman and Muniz (2001)
López-Pintado and Romo (2005) Cuevas, Febrero and Fraiman (2007)
Cuesta-Albertos and Nieto-Reyes (2008) López-Pintado and Romo (2009)
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Description and previous results

The modified band depth

López-Pintado and Romo (2009) (J = 2)

MBDB,2(x) =
(B

2

)−1 ∑
1≤i1<i2≤B

λ(A(x;xi1 , xi2 ))

λ(I)

where λ is the Lebesgue measure in I and

A(x;xi1 , xi2 ) ≡ {t ∈ I : min
r=i1,i2

xr(t) ≤ x(t) ≤ max
r=i1,i2

xr(t)}
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Description and previous results

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0
0.1

0.2
0.3

0.4

t

x_
1

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0
0.1

0.2
0.3

0.4

t

x_
1

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
.0

0
.1

0
.2

0
.3

0
.4

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
.0

0
.1

0
.2

0
.3

0
.4

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
.0

0
.1

0
.2

0
.3

0
.4

Figure: Illustration of how to compute the Modified Band Depth J = 2
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Our methodology

The algorithm

Let B be the bootstrap size, α ∈ (0, 1) the confidence level, γ ∈ (0, 1) the percentile.

X1, X2, . . . Xn and Y1, Y2, . . . Ym

• For b = 1, . . . , B;

resample from X1, X2, . . . Xn and Y1, Y2, . . . Ym to obtain X∗b1 , X∗b2 , . . . X∗bn
and Y ∗b1 , Y ∗b2 , . . . Y ∗bm

• For b = 1, . . . , B;

compute q∗bX,n,γ and q∗bY,m,γ

• For every t ∈ R;

consider q∗b (t) = q∗bY,m,γ(t)− q∗bX,n,γ(t), for b = 1, . . . , B

• For b = 1, . . . , B;

order the sample curves q∗b , from inner to outer using any notion of depth for
curves and take the band given by the (1− α) · 100% deepest curves
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Our methodology

The algorithm

X ∼ Pareto(10,10) Y ∼ Pareto(60,10)

1

●●●

●

●●
●

●

●

●●
●●●

●
●●●●

●

●

●

●

●●

●

●
●

●●●

●
●●

●

●

●
●●

●
●
●
●
●

●

●●●●●●●
●
●●●

●

●

●●
●

●

●●

●

●

●
●●●●●

●
●

●●
●

●

●

●

●
●
●●●

●●
●●

●

●●
●●●

●
●●

●●

0 20 40 60 80 100

0
10

20
30

40

Index

x

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●
●
●

●

0 10 20 30 40

0
5

10
15

ejeb

au
x1

b

0 10 20 30 40

0
5

10
15

ejeb

qm
ej

eb
[1

, ]

0 10 20 30 40
0

5
10

15

ejeb

qm
ej

eb
[1

, ]

Figure: Illustration of the algorithm

Inference for the difference of two percentile residual life functions Alba Maŕıa Franco Pereira COMPSTAT, Paris, France 2010
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The sampling models

The sampling models

X ∼ Pareto(10,10)

Y1 ∼ Pareto(20,10) Y2 ∼ Pareto(40,10)
Y3 ∼ Pareto(60,10) Y4 ∼ Pareto(80,10)
Y5 ∼ Pareto(100,10) Y6 ∼ Pareto(110,10)

1
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t
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qX, 0.5
qY1, 0.5
qY2, 0.5
qY3, 0.5
qY4, 0.5
qY5, 0.5
qY6, 0.5

X7 ∼ Pareto(10,10) Y7 ∼ Pareto(1,5)
X8 ∼ Pareto(20,5) Y8 ∼ Pareto(70,10)
X9 ∼ Pareto(160,20) Y9 ∼ Pareto(70,10)
X10 ∼ Pareto(10,10) Y10 ∼ Pareto(20,15)

1

blanco

1

Modified band depth introduced in López-Pintado and Romo (2009) with J = 2;
B = 1000, γ = 0.5, 1− α = 0.90
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The simulation mechanism

The simulation mechanism

• Modified band depth introduced in López-Pintado and Romo (2009) with J = 2

• B = 1000, γ = 0.5, 1− α = 0.90
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The simulation results

The simulation results
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Figure: 90%-confidence band for qYi,0.5 − qX,0.5, i = 1, · · · , 6
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The simulation results

The simulation results
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Figure: 90%-confidence band for qYi,0.5 − qX,0.5, i = 7, · · · , 10
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Conclusions of the simulation study

Conclusions of the simulation study

The bands provide us with a criteria of whether two random variables are close or not
with respect to a prl order or allow us to compare prl functions in an interval

LLB above the x-axis ⇒ the random variables are ordered

ULB below the x-axis ⇒ the random variables are ordered

LLB below the x-axis and ULB above the x-axis ⇒ we can not say that one variable
dominates the other
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Application in medicine
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Figure: 90%-confidence bands for the difference of the merl of the patients undergoing T1 and T2
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Estimators

Let X1, . . . , Xn be the lifetimes of the patients after a treatment. Only their right
censored versions are observed, leading to the information (δ1, Z1), . . . , (δn, Zn),
where for i = 1, . . . , n,

δi = I{Xi≤Yi} and Zi = Xi ∧ Yi = max{Xi, Yi},

with Yi representing the i-th censoring random variable (I is the indicator function)

It is assumed that Y1, . . . , Yn are i.i.d. with G(y) = P (Y > y) > 0 and that G is
continuous. The survival function of X can be estimated by

F̄X,n(x) =
N+(x) + 1

n+ 1

n∏
j=1

(2 +N+(Zj)

1 +N+(Zj)

)I{δj=0,Zj≤x} ,

where N+(x) ≡ number of censored and uncensored observations greater than x.
Slight variation of the Bayes estimator of Susarla and Van Ryzin (1976)
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