Introduction	The problem	A simulation study	A real data example	References
00 00 00	000000 00			

INFERENCE FOR THE DIFFERENCE OF TWO PERCENTILE RESIDUAL LIFE FUNCTIONS

Alba M. Franco-Pereira

Department of Statistics Universidad Carlos III de Madrid August, 2010

Joint work with Rosa E. Lillo and Juan Romo

イロト イポト イヨト イヨト

	Introduction 00 00 00	The problem 000000 00	A simulation study O O OO O	A real data example	References O
--	--------------------------------	-----------------------------	---	---------------------	-----------------

Outline

Introduction

Motivation Reliability measures Stochastic orders

2 The problem

Description and previous results Our methodology

3 A simulation study

The sampling models The simulation mechanism The simulation results Conclusions of the simulation study

A real data example

6 References

	Introduction ●○ ○○	The problem 000000 00	A simulation study O O OO O	A real data example	References O
--	--------------------------	------------------------------------	---	---------------------	-----------------

Motivation

EXAMPLE

Kalbfleisch and	Prentice	(1982)	
-----------------	----------	--------	--

TYPE OF TREATMENT	PATIENTS	% CENSORED
T1 (Radiotherapy)	100	27%
T2 (Radiotherapy + Chemotherapeutic agent)	95	27.37%

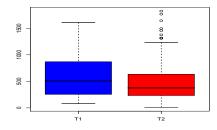


Figure: Box-and-whisker plots of the survival times of the two groups of patients

Introduction ○● ○○ ○○	The problem 000000 00	A simulation study O O OO O	A real data example	References O
Motivation				
Example				

Interests:

- To study the effectiveness of both treatments independently
- To compare both types of treatments

Tools:

- Reliability measures
- Stochastic orderings

Introduction ○● ○○ ○○	The problem 000000 00	A simulation study O O OO O	A real data example	References O
Motivation				
Example				

Interests:

- To study the effectiveness of both treatments independently
- To compare both types of treatments

Tools:

- Reliability measures
- Stochastic orderings

イロト イポト イヨト イヨト

Introduction ○○ ●○ ○○	The problem 000000 00	A simulation study O O OO O	A real data example	References O
Reliability measures				
Definitio	NS			

Let X be the lifetime of an item or component and let $X_t = \left[X-t|X>t\right]$ represents its residual lifetime at time t>0

Assume that X has an absolutely continuous distribution F_X and a density f_X

- The survival function of X is $\overline{F}_X(t) = P(X > t)$
- The hazard rate function of X is $r_X(t) = \frac{f_X(t)}{\bar{F}_X(t)}$
- The mean residual life function of X is $m_X(t) = E[X_t]$
- Fix $\gamma \in (0, 1)$. The γ -percentile residual life function of X is the γ -percentile of X_t ; i.e.,

$$q_{X,\gamma}(t) = \begin{cases} F_{X_t}^{-1}(\gamma), & t < u_X; \\ 0, & t \ge u_X, \end{cases}$$

Introduction ○○ ●○ ○○	The problem 000000 00	A simulation study O O O O O	A real data example	References O
Reliability measures				
Definitio	NS			

Let X be the lifetime of an item or component and let $X_t = \left[X-t|X>t\right]$ represents its residual lifetime at time t>0

Assume that X has an absolutely continuous distribution F_X and a density f_X

- The survival function of X is $\overline{F}_X(t) = P(X > t)$
- The hazard rate function of X is $r_X(t) = \frac{f_X(t)}{\bar{F}_X(t)}$
- The mean residual life function of X is $m_X(t) = E[X_t]$
- Fix $\gamma \in (0,1)$. The γ -percentile residual life function of X is the γ -percentile of X_t ; i.e.,

$$q_{X,\gamma}(t) = \begin{cases} F_{X_t}^{-1}(\gamma), & t < u_X; \\ 0, & t \ge u_X, \end{cases}$$

Introduction	The problem	A simulation study	A real data example	References
	000000 00			

Reliability measures

MOTIVATION

RELIABILITY MEASURES	STOCHASTIC ORDERINGS
Hazard rate function	HR order
Survival function	ST order
Mean residual life function	MRL order
Percentile residual life function	γ -PRL, $\gamma \in (0,1)$

1

Introduction ○○ ●○	The problem 000000 00	A simulation study O O O O O	A real data example	References O
Stochastic orders				

DEFINITIONS

Let X and Y be two absolutely continuous random variables with survival functions \bar{F}_X and \bar{F}_Y , hazard rate functions r_X and r_Y , and mean residual life functions m_X and m_Y , respectively

• X is said to be smaller than Y in the usual stochastic order, denoted by $X \leq_{st} Y,$ if

 $\overline{F}_X(t) \le \overline{F}_Y(t), \quad \text{for all} \quad t \in \mathbb{R}$

• X is said to be smaller than Y in the hazard rate order, denoted by $X \leq_{hr} Y$, if

 $r_X(t) \ge r_Y(t), \quad \text{for all} \quad t \in \mathbb{R}$

• X is said to be smaller than Y in the mean residual life order, denoted by $X \leq_{mrl} Y,$ if

 $m_X(t) \le m_Y(t), \quad \text{for all} \quad t \in \mathbb{R}$

• Fix $\gamma \in (0, 1)$. X is said to be smaller than Y in the γ -percentile residual life order, denoted by $X \leq_{\gamma-rl} Y$, if

$$q_{X,\gamma}(t) \le q_{Y,\gamma}(t), \quad \text{for all} \quad t \in \mathbb{R}$$

Introduction ○○ ●○	The problem 000000 00	A simulation study O O O O O	A real data example	References O
Stochastic orders				

DEFINITIONS

Let X and Y be two absolutely continuous random variables with survival functions \bar{F}_X and \bar{F}_Y , hazard rate functions r_X and r_Y , and mean residual life functions m_X and m_Y , respectively

• X is said to be smaller than Y in the usual stochastic order, denoted by $X \leq_{st} Y$, if

 $\overline{F}_X(t) < \overline{F}_Y(t)$, for all $t \in \mathbb{R}$

• X is said to be smaller than Y in the hazard rate order, denoted by $X \leq_{hr} Y$, if

 $r_{\mathbf{X}}(t) > r_{\mathbf{Y}}(t), \text{ for all } t \in \mathbb{R}$

• X is said to be smaller than Y in the **mean residual life order**, denoted by $X \leq_{mrl} Y$, if

 $m_X(t) < m_Y(t)$, for all $t \in \mathbb{R}$

• Fix $\gamma \in (0, 1)$. X is said to be smaller than Y in the γ -percentile residual life order, denoted by $X \leq_{\gamma-rl} Y$, if

 $q_{X,\gamma}(t) < q_{Y,\gamma}(t), \text{ for all } t \in \mathbb{R}$

3

Introduction ○○ ○○ ○●	The problem 000000 00	A simulation study O O O O	A real data example	References O

Stochastic orders

EXAMPLE

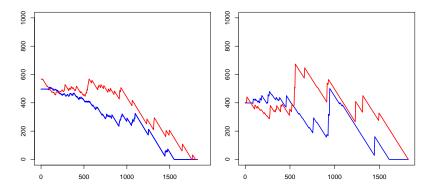


Figure: Comparison of the mrl's and merl's of the patients undergoing T1 and T2

Introduction 00 00 00	The problem 000000 00	A simulation study O O O O O	A real data example	References O

Outline

D Introduction

Motivation Reliability measures Stochastic orders

2 The problem

Description and previous results Our methodology

3 A simulation study

The sampling models The simulation mechanism The simulation results Conclusions of the simulation study

A real data example

6 References

Introduction 00 00 00	The problem ●00000 ○0	A simulation study O O O O O	A real data example	References O
Description and previo	us results			
Descripti	ION			

Given $\gamma, \alpha \in (0, 1)$, $X_1, X_2, \ldots X_n$ and $Y_1, Y_2, \ldots Y_m$

how to construct a $(1-lpha)\cdot 100\%$ -confidence band for $q_{Y,\gamma}(t)-q_{X,\gamma}(t)$?

The empirical γ -percentile residual life function of X is

$$q_{X,n,\gamma}(t) = Q_n(\gamma + (1 - \gamma)\bar{F}_{X,n}(t)) - t, \quad t < u_X, \quad 0 < \gamma < 1$$

where $\bar{F}_{X,n}$ is the empirical survival of X and Q_n is its sample quantile function:

$$Q_n(x) = \begin{cases} X_k & \frac{(k-1)}{n} < x \le \frac{k}{n} & (k = 1, \dots, n) \\ X_1 & x = 0 \end{cases}$$

Introduction 00 00 00	The problem ○●○○○○ ○○	A simulation study O O O O O	A real data example	References O
Description and previo	us results			

PREVIOUS RESULTS

Csörgo and Csörgo (1987)

•
$$q_{X,n,\gamma}(t)$$
 a.s. $q_{X,\gamma}(t)$

•
$$n^{\frac{1}{2}} f_X(q_{X,\gamma}(t)+t) \{q_{X,\gamma}(t)-q_{X,n,\gamma}(t)\} \stackrel{d}{\longrightarrow} N(0,1)$$

Our methodology is based on

- Bootstrap techniques
- Statistical depth

イロト イロト イヨト イヨト

Introduction 00 00 00	The problem ○●○○○○ ○○	A simulation study O O OO O	A real data example	References O
Description and previo	ous results			

PREVIOUS RESULTS

Csörgo and Csörgo (1987)

• $q_{X,n,\gamma}(t)$ a.s. $q_{X,\gamma}(t)$

•
$$n^{\frac{1}{2}} f_X(q_{X,\gamma}(t)+t) \{q_{X,\gamma}(t)-q_{X,n,\gamma}(t)\} \stackrel{d}{\longrightarrow} N(0,1)$$

Our methodology is based on

- Bootstrap techniques
- Statistical depth

3

Introduction 00 00 00	The problem 00●000 00	A simulation study O O O O O	A real data example	References O
Description and previo	ous results			
Statistic	AL DEPTH			

STATISTICAL DEPTH FOR MULTIVARIATE DATA

Measures the centrality of a d-dimensional observation with respect to a multivariate distribution F or with respect to a set of d-dimensional points

Mahalanobis (1936) Oja (1983) Singh (1991) Fraiman and Meloche (1999) Zuo (2003)

Tuckey (1975) Liu (1990) Koshevoy and Mosler (1997) Vardi and Zhang (2000)

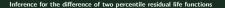
Introduction 00 00 00	The problem ○○●○○○ ○○	A simulation study O O O O O	A real data example	References O
Description and previo	ous results			
STATISTIC	AL DEPTH			

STATISTICAL DEPTH FOR MULTIVARIATE DATA

Measures the centrality of a d-dimensional observation with respect to a multivariate distribution F or with respect to a set of d-dimensional points

Mahalanobis (1936)
Oja (1983)
Singh (1991)
Fraiman and Meloche (1999)
Zuo (2003)

Tuckey (1975) Liu (1990) Koshevoy and Mosler (1997) Vardi and Zhang (2000)



Introduction 00 00 00	The problem ○○●●○○ ○○	A simulation study O O OO O	A real data example	References O
Description and previ	ous results			
Statistic	AL DEPTH			

STATISTICAL DEPTH FOR FUNCTIONAL DATA

Measures the centrality of a function with respect to a set of functions

Vardi and Zhang (2000) López-Pintado and Romo (2005) Cuesta-Albertos and Nieto-Reyes (2008) Fraiman and Muniz (2001) Cuevas, Febrero and Fraiman (2007) López-Pintado and Romo (2009)

Introduction 00 00 00	The problem ○○○●○○ ○○	A simulation study O O O O O	A real data example	References O
Description and previo	ous results			
STATISTIC	ΛΙ ΠΕΡΤΗ			

STATISTICAL DEPTH FOR FUNCTIONAL DATA

Measures the centrality of a function with respect to a set of functions

Vardi and Zhang (2000) López-Pintado and Romo (2005) Cuesta-Albertos and Nieto-Reyes (2008) Fraiman and Muniz (2001) Cuevas, Febrero and Fraiman (2007) López-Pintado and Romo (2009)

イロト イポト イヨト イヨ

	Introduction 00 00 00	The problem 0000●0 00	A simulation study O O O O O	A real data example	References O
--	--------------------------------	-----------------------------	---	---------------------	-----------------

Description and previous results

The modified band depth

López-Pintado and Romo (2009) (J = 2)

$$MBD_{B,2}(x) = {\binom{B}{2}}^{-1} \sum_{1 \le i_1 \le i_2 \le B} \frac{\lambda(A(x; x_{i_1}, x_{i_2}))}{\lambda(I)}$$

where λ is the Lebesgue measure in I and

$$A(x; x_{i_1}, x_{i_2}) \equiv \{t \in I : \min_{r=i_1, i_2} x_r(t) \le x(t) \le \max_{r=i_1, i_2} x_r(t)\}$$

Inference for the difference of two percentile residual life functions

Introduction	The problem	A simulation study	A real data example	References
	000000			
00 00				

Description and previous results

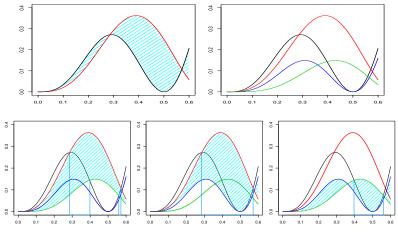


Figure: Illustration of how to compute the Modified Band Depth J=2

イロト イボト イヨト イヨ

Introduction 00 00 00	The problem ○○○○○○ ●○	A simulation study O O OO O	A real data example	References O
Our methodology				
E				

The algorithm

Let B be the bootstrap size, $\alpha \in (0,1)$ the confidence level, $\gamma \in (0,1)$ the percentile.

 $X_1, X_2, \ldots X_n$ and $Y_1, Y_2, \ldots Y_m$

• For b = 1, ..., B;

resample from $X_1, X_2, ..., X_n$ and $Y_1, Y_2, ..., Y_m$ to obtain $X_1^{*b}, X_2^{*b}, ..., X_n^{*b}$ and $Y_1^{*b}, Y_2^{*b}, ..., Y_m^{*b}$

- For b = 1, ..., B; compute $q_{X,n,\gamma}^{*b}$ and $q_{Y,m,\gamma}^{*b}$
- For every $t \in \mathbb{R}$; consider $q_b^*(t) = q_{Y,m,\gamma}^{*b}(t) - q_{X,n,\gamma}^{*b}(t)$, for $b = 1, \dots, L$
- For b = 1, ..., B;

order the sample curves q_b^* , from inner to outer using any notion of depth for curves and take the band given by the $(1 - \alpha) \cdot 100\%$ dependence of $a \to 4\%$.

Our methodology	Introduction 00 00 00	The problem ○○○○○ ●○	A simulation study O O O O	A real data example	References O
	Our methodology				

The algorithm

Let B be the bootstrap size, $\alpha \in (0,1)$ the confidence level, $\gamma \in (0,1)$ the percentile.

$$X_1, X_2, \ldots X_n$$
 and $Y_1, Y_2, \ldots Y_m$

• For b = 1, ..., B;

resample from $X_1, X_2, \ldots X_n$ and $Y_1, Y_2, \ldots Y_m$ to obtain $X_1^{*b}, X_2^{*b}, \ldots X_n^{*b}$ and $Y_1^{*b}, Y_2^{*b}, \ldots Y_m^{*b}$

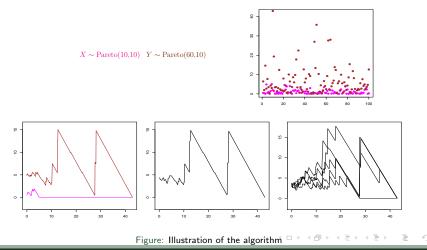
- For $b = 1, \dots, B$; compute $q_{X,n,\gamma}^{*b}$ and $q_{Y,m,\gamma}^{*b}$
- For every $t \in \mathbb{R}$; consider $q_b^*(t) = q_{Y,m,\gamma}^{*b}(t) - q_{X,n,\gamma}^{*b}(t)$, for $b = 1, \dots, B$
- For b = 1, ..., B;

order the sample curves q_b^* , from inner to outer using any notion of depth for curves and take the band given by the $(1-\alpha)\cdot 100\%$ deepest curves

		00000		A real data example	References O
--	--	-------	--	---------------------	-----------------

Our methodology

THE ALGORITHM



Inference for the difference of two percentile residual life functions

Alba María Franco Pereira COMPSTAT, Paris, France 2010

Introduction 00 00 00	The problem 000000 00	A simulation study	A real data example	References O

Outline

Introduction

Motivation Reliability measures Stochastic orders

2 The problem

Description and previous results Our methodology

3 A simulation study

The sampling models The simulation mechanism The simulation results Conclusions of the simulation study

4 A real data example

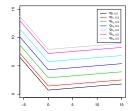
5 References

Introduction OO OO OO	The problem 000000 00	A simulation study ● ○ ○ ○	A real data example	References O
The sampling models				

The sampling models

 $X \sim \text{Pareto}(10, 10)$

 $\begin{array}{ll} Y_1 \sim \operatorname{Pareto}(20,10) & Y_2 \sim \operatorname{Pareto}(40,10) \\ Y_3 \sim \operatorname{Pareto}(60,10) & Y_4 \sim \operatorname{Pareto}(80,10) \\ Y_5 \sim \operatorname{Pareto}(100,10) & Y_6 \sim \operatorname{Pareto}(110,10) \end{array}$



 $\begin{array}{ll} X_7 \sim {\rm Pareto}(10,10) & Y_7 \sim {\rm Pareto}(1,5) \\ X_8 \sim {\rm Pareto}(20,5) & Y_8 \sim {\rm Pareto}(70,10) \\ X_9 \sim {\rm Pareto}(160,20) & Y_9 \sim {\rm Pareto}(70,10) \\ X_{10} \sim {\rm Pareto}(10,10) & Y_{10} \sim {\rm Pareto}(20,15) \end{array}$

Introduction 00 00 00	The problem 000000 00	A simulation study ○ ○ ○	A real data example	References O
The simulation mecha	nism			

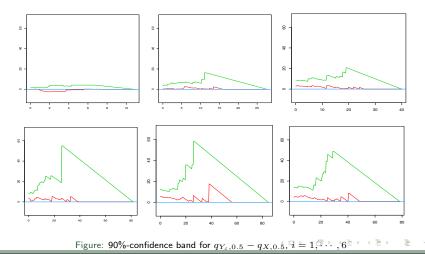
The simulation mechanism

- Modified band depth introduced in López-Pintado and Romo (2009) with J = 2
- $B = 1000, \gamma = 0.5, 1 \alpha = 0.90$

Introduction	The problem	A simulation study	A real data example	References
00	000000			
00 00 00	00	0 ● ○		
		0		

The simulation results

THE SIMULATION RESULTS



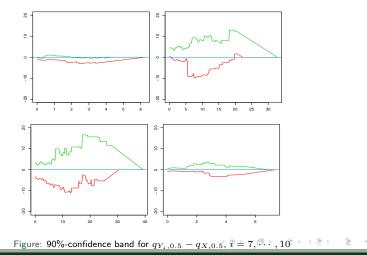
Inference for the difference of two percentile residual life functions

Alba María Franco Pereira COMPSTAT, Paris, France 2010

	Introduction 00 00 00	The problem 000000 00	A simulation study ○ ○ ○ ●	A real data example	References O
--	--------------------------------	------------------------------------	--	---------------------	-----------------

The simulation results

The simulation results



Introduction 00 00 00	The problem 000000 00	A simulation study ○ ○ ●	A real data example	References O
Conclusions of the sin	nulation study			

CONCLUSIONS OF THE SIMULATION STUDY

The bands provide us with a criteria of whether two random variables are close or not with respect to a prl order or allow us to compare prl functions in an interval

LLB above the x-axis \Rightarrow the random variables are ordered

ULB below the x-axis \Rightarrow the random variables are ordered

LLB below the x-axis and ULB above the x-axis \Rightarrow we can not say that one variable dominates the other

Introduction 00 00 00	The problem 000000 00	A simulation study ○ ○ ●	A real data example	References O
Conclusions of the simula	ation study			

CONCLUSIONS OF THE SIMULATION STUDY

The bands provide us with a criteria of whether two random variables are close or not with respect to a prl order or allow us to compare prl functions in an interval

LLB above the x-axis \Rightarrow the random variables are ordered

ULB below the x-axis \Rightarrow the random variables are ordered

LLB below the x-axis and ULB above the x-axis \Rightarrow we can not say that one variable dominates the other

Introduction 00 00 00	The problem 000000 00	A simulation study ○ ○ ●	A real data example	References O
Conclusions of the sim	ulation study			

CONCLUSIONS OF THE SIMULATION STUDY

The bands provide us with a criteria of whether two random variables are close or not with respect to a prl order or allow us to compare prl functions in an interval

LLB above the x-axis \Rightarrow the random variables are ordered

ULB below the x-axis \Rightarrow the random variables are ordered

LLB below the x-axis and ULB above the x-axis \Rightarrow we can not say that one variable dominates the other

Introduction	The problem	A simulation study	A real data example	References
00	000000			
00 00 00	00	00		
		õ		

Outline

Introduction

Motivation Reliability measures Stochastic orders

2 The problem

Description and previous results Our methodology

A simulation study

The sampling models The simulation mechanism The simulation results Conclusions of the simulation study

A real data example

6 References

Introduction	The problem	A simulation study	A real data example	References
00	000000			
00 00 00				

Application in medicine

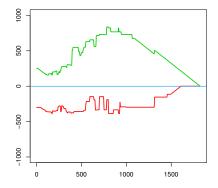


Figure: 90%-confidence bands for the difference of the merl of the patients undergoing T1 and T2

Introduction	The problem	A simulation study	A real data example	References
00 00 00	00	000		
		80		

Outline

Introduction

Motivation Reliability measures Stochastic orders

2 The problem

Description and previous results Our methodology

A simulation study

The sampling models The simulation mechanism The simulation results Conclusions of the simulation study

A real data example

6 References

Introduction	The problem	A simulation study	A real data example	References
00	000000			0

- Csörgő, S. (1987). Estimating percentile residual life under random censorship. *Contributions to stochastics: in honour to the 75th birthday of Walther Eberl, Sr.*, Springer-Verlag.
- Csörgő, M. and Csörgő, S. (1987). Estimation of the percentile residual life. Operations Research 35, 598–606.
- Cuesta-Albertos, J. and Nieto-Reyes, A. (2008). The random Tukey depth. *Computational Statistics and Data Analysis* **52**, 4979–4988.
 - Cuevas, A., Febrero, M. and Fraiman, R. (2007). Robust estimation and classification for functional data via projection-based depth notions. *Computational Statistics* **22**, 481–496.

Fraiman, R. and Meloche, J. (1999). Multivariate L-estimation. Test 8, 255-317.

- Fraiman, R. and Muniz, G. (2001). Trimmed means for functional data. *Test* 10, 419–440.

Franco-Pereira, A. M., Lillo, R. E., Romo, J., and Shaked, M. (2008). Percentile residual life orders. Technical Report, Department of Mathematics, University of Arizona.

Introduction	The problem	A simulation study	A real data example	References
00 00 00				

- Ghorai, J., Susarla, A., Susarla, V. and van Ryzin, J. (1980). Nonparametric estimation of mean residual life with censored data. In *Colloquia Mathematica Societatis Janos Bolyai 32. Nonparametric Statistical Inference* (B. V. Gnedenko et al., eds.), North-Holland, Amsterdam, 269-291.
- - Kalbfleisch J. D. and Prentice R. L. (1980). *The statistical analysis of failure time data*, John Wiley, New York.
 - Koshevoy, G. and Mosler, K. (1997). Zonoid trimming for multivariate distributions. The Annals of Statistics 25, 1998–2017.
- Liu R. (1990). On a notion of data depth based on randomsimplices. *The Annals of Statistics* **18**, 405–414.

López-Pintado, S. and Romo, J. (2005). A half-graph depth for functional data. *Working paper* **05-16**.

- López-Pintado, S. and Romo, J. (2009). On the concept of depth for functional data. *Journal of the American Statistical Association* **104**, 718–734.
- Mahalanobis, P. C. (1936). On the generalized distance in statistics. Proceedings of National Academy of Science of India 12, 49–55.

Introduction	The problem	A simulation study	A real data example	References
00				•
00 00 00				

Singh, K. (1991). A notion of majority depth. Unpublished document.

Susarla, V. and Van Ryzin, J. (1976). Nonparametric Bayesian estimation of survival curves from incomplete observations. *Journal of the American Statistical Association* **61**, 897–902.

Tukey, J. (1975). Mathematics and picturing data. *Proceedings of the 1975 International Congress of Mathematics* **2**, 523–531.

Vardi, Y. and Zhang, C. H. (2000). The multivariate L_1 -median and associated data depth. Proceedings of the National Academy of Science USA **97**, 1423–1426.

Zuo, Y. (2003). Projection based depth functions and associated medians. *The Annals of Statistics* **31**, 1460–1490.

イロト イポト イヨト イヨ

Introduction 00 00 00	The problem 000000 00	A simulation study 0 0 00 00	A real data example	References ●

Estimators

Let X_1, \ldots, X_n be the lifetimes of the patients after a treatment. Only their right censored versions are observed, leading to the information $(\delta_1, Z_1), \ldots, (\delta_n, Z_n)$, where for $i = 1, \ldots, n$,

$$\delta_i = I_{\{X_i < Y_i\}} \quad \text{and} \quad Z_i = X_i \wedge Y_i = \max\{X_i, Y_i\},$$

with Y_i representing the *i*-th censoring random variable (*I* is the indicator function)

It is assumed that Y_1, \ldots, Y_n are i.i.d. with G(y) = P(Y > y) > 0 and that G is continuous. The survival function of X can be estimated by

$$\bar{F}_{X,n}(x) = \frac{N^+(x)+1}{n+1} \prod_{j=1}^n \left(\frac{2+N^+(Z_j)}{1+N^+(Z_j)}\right)^{I_{\{\delta_j=0, Z_j \le x\}}}$$

where $N^+(x) \equiv$ number of censored and uncensored observations greater than x. Slight variation of the Bayes estimator of Susarla and Van Ryzin (1976)