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Characteristics of fMRI data

fMRI = functional magnetic resonance imaging

→ detection of activated voxels in the brain

number of variables (voxels) exceeds
the number of measurements extremely
spatial dependence
temporal dependence in each voxel
(assuming a first-order autoregressive model)

first-level analyses mostly done by using a univariate general linear
model for each voxel including an adjustment for temporal
correlation

Yielding higher power via multivariate statistics in fMRI data?!

Hollmann et al. (2010)
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General linear model

signal is measured as time series in n time points over p voxels
(n < p) → presentable in a GLM

Y = XB + E E ∼ N(0, I⊗Σ)y11 · · · y1p

...
. . .

...
yn1 · · · ynp

=

x11 · · · x1s

...
. . .

...
xn1 · · · xns


β11 · · · β1p

...
. . .

...
βs1 · · · βsp

+

ε11 · · · ε1p

...
. . .

...
εn1 · · · εnp


hypothesis: H0 : C′B = 0

⇒ multivariate analysis is possible by means of so-called stabilized

multivariate test statistics (Läuter et al., 1996 and 1998)
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
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⇒ multivariate analysis is possible by means of so-called stabilized

multivariate test statistics (Läuter et al., 1996 and 1998) but adjustment

for temporal correlation necessary: aim of our research
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Standardized Sum and Principal Component Test

creating q (1 ≤ q < min(p, n − s)) summary variables (scores) by
means of a p × q-dimensional weight matrix D, that is any
function of the total sums of squares and cross products matrix W
(W = SSQhypothesis + SSQresiduals)

Z(n×q) = Y(n×p)D(p×q)

⇒ using these low-dimensional scores in classical analyses then

Standardized Sum Test: d = Diag(W)−
1
2 1p

Principal Component Test: D: computed by means of the
eigenvalue problem of W

scale dependent: WD = DΛ, D′D = Iq

scale invariant: WD = Diag(W)DΛ, D′Diag(W)D = Iq
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Parametric adjustment for temporal correlation

Satterthwaite approximation
temporal correlation is taken into account within the test statistic
→ adjusting the variance estimation and the degrees of freedom

Prewhitening
Y = XB + E , E ∼ N(0, V ⊗Σ)
→ classical model: Y? = X?B + E?, E? ∼ N(0, In ⊗Σ) via

Y? = V− 1
2 Y, X? = V− 1

2 X, E? = V− 1
2 E

→ yields an exact test when V is known

⇒ problem:
estimation of the correlation coefficient – assuming AR(1)
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Non-parametric adjustment for temporal correlation

permutations
1.        2.        3.       4.       5.       6. ...

original

classical permutation

Multivariate test statistics for fMRI data Daniela Adolf 6 of 11



Background Stabilized multivariate tests Dealing with correlated sample elements Comparison Summary

Non-parametric adjustment for temporal correlation

blockwise permutation of
adjacent elements to account for
temporal correlation

permutations
1.        2.        3.       4.       5.        6. ...

original

blockwise permutation
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Non-parametric adjustment for temporal correlation

blockwise permutation of
adjacent elements to account for
temporal correlation
including a random shift in order
to increase the number of possible
blockwise permutations

random shift and permutation
1.                      2.                     3. ...

original

blockwise permutation including a random shift
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Non-parametric adjustment for temporal correlation

blockwise permutation of
adjacent elements to account for
temporal correlation
including a random shift in order
to increase the number of possible
blockwise permutations
→ in each permutation step:

random removal of a (0 ≤ a < n)
elements on top, adding them at
the end
block arrangement and
permutation
calculation of the permuted test
statistic

random shift and permutation
1.                      2.                     3. ...

original

blockwise permutation including a random shift
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Simulation studies for multivariate adjustments

. . . to control the empirical type I error

prewhitening holds the nominal test level (for at least a few
hundreds of measurements, which is a common sample size in
fMRI studies)

Satterthwaite approximation partly exceeds the test level

blockwise permutation including a random shift holds the
nominal test level (for a block length of at least 40 even when
there are just two blocks left)
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Application on fMRI data: Ultimatum Game

Ultimatum Game: socio-economic application in fMRI
→ subject gets an offer for division of an amount of money

→ the difference in activation for unfair and fair offers in the
anterior insula is hard to detect by univariate test statistics –
better using multivariate tests?

⇒ analyzing this small homogeneous region as well as a larger
heterogeneous region including the anterior insula to compare the
different test statistics and adjustments
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Application on fMRI data: Ultimatum Game

exemplary results of one subject

univariate test statistics multivariate test statistics
Bonferroni- Standard.        scale variant scale invariant    

region correction method unadjusted adjusted Sum Test           PC Test             PC Test

anterior insula Satterthwaite 0.002 0.105 <0.001 0.099    0.123
prewhitening 0.006 0.283           <0.001           0.086 0.073
blockwise permutation
including a random shift          <0.001 0.048           0.005           0.070 0.071

region including Satterthwaite <0.001 0.234           0.162           0.035 0.361
anterior insula prewhitening 0.001 1.000           0.169           0.018 0.237

blockwise permutation
including a random shift <0.001 0.090          0.236           0.004 0.009

48=p

900=p

P-values for testing the difference of unfair to fair offers within the anterior insula as well
as within a larger heterogenous region containing the anterior insula;
univariate: the minimale P-value is given; permutations done with block length 50
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Summary

⇒ stabilized multivariate tests are applicable and advantageous
in fMRI analyses using adjustments for temporal correlation

prewhitening works well for large sample sizes

Satterthwaite approximation partly fails

blockwise permutation including a random shift turns out to
be an applicable and powerful alternative method (also in the
univariate case)
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