Background	Stabilized multivariate tests O	Dealing with correlated sample elements 00	Comparison	Summary

Parametric and non-parametric multivariate test statistics for high-dimensional fMRI data

Daniela Adolf, Johannes Bernarding, Siegfried Kropf

Department for Biometry and Medical Informatics Otto-von-Guericke University Magdeburg, Germany

> COMPSTAT August 24, 2010

Characteristics of fMRI data

fMRI = functional magnetic resonance imaging

- \rightarrow detection of activated voxels in the brain
 - number of variables (voxels) exceeds the number of measurements extremely
 - spatial dependence
 - temporal dependence in each voxel (assuming a first-order autoregressive model)

Hollmann et al. (2010)

first-level analyses mostly done by using a univariate general linear model for each voxel including an adjustment for temporal correlation

Yielding higher power via multivariate statistics in fMRI data?!

Background ○●	Stabilized multivariate tests O	Dealing with correlated sample elements	Comparison	Summary
Genera	al linear model			

signal is measured as time series in *n* time points over *p* voxels $(n < p) \rightarrow$ presentable in a GLM

$$\mathbf{Y} = \mathbf{X}\mathbf{B} + \mathbf{E} \qquad \mathbf{E} \sim \mathsf{N}(\mathbf{0}, \mathbf{I} \otimes \mathbf{\Sigma})$$
$$\begin{pmatrix} y_{11} & \cdots & y_{1p} \\ \vdots & \ddots & \vdots \\ y_{n1} & \cdots & y_{np} \end{pmatrix} = \begin{pmatrix} x_{11} & \cdots & x_{1s} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{ns} \end{pmatrix} \begin{pmatrix} \beta_{11} & \cdots & \beta_{1p} \\ \vdots & \ddots & \vdots \\ \beta_{s1} & \cdots & \beta_{sp} \end{pmatrix} + \begin{pmatrix} \epsilon_{11} & \cdots & \epsilon_{1p} \\ \vdots & \ddots & \vdots \\ \epsilon_{n1} & \cdots & \epsilon_{np} \end{pmatrix}$$

hypothesis: $H_0: \boldsymbol{C}' \boldsymbol{B} = \boldsymbol{0}$

 \Rightarrow multivariate analysis is possible by means of so-called stabilized multivariate test statistics (Läuter et al., 1996 and 1998)

Background ○●	Stabilized multivariate tests O	Dealing with correlated sample elements	Comparison	Summary
Genera	l linear model			

signal is measured as time series in *n* time points over *p* voxels $(n < p) \rightarrow$ presentable in a GLM

$$\mathbf{Y} = \mathbf{X}\mathbf{B} + \mathbf{E} \qquad \mathbf{E} \sim \mathsf{N}(\mathbf{0}, \mathbf{I} \otimes \mathbf{\Sigma})$$
$$\begin{pmatrix} y_{11} & \cdots & y_{1p} \\ \vdots & \ddots & \vdots \\ y_{n1} & \cdots & y_{np} \end{pmatrix} = \begin{pmatrix} x_{11} & \cdots & x_{1s} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{ns} \end{pmatrix} \begin{pmatrix} \beta_{11} & \cdots & \beta_{1p} \\ \vdots & \ddots & \vdots \\ \beta_{s1} & \cdots & \beta_{sp} \end{pmatrix} + \begin{pmatrix} \epsilon_{11} & \cdots & \epsilon_{1p} \\ \vdots & \ddots & \vdots \\ \epsilon_{n1} & \cdots & \epsilon_{np} \end{pmatrix}$$

hypothesis: $H_0 : \mathbf{C'B} = \mathbf{0}$

 \Rightarrow multivariate analysis is possible by means of so-called stabilized multivariate test statistics (Läuter et al., 1996 and 1998)

Background ○●	Stabilized multivariate tests O	Dealing with correlated sample elements	Comparison	Summary
Genera	l linear model			

signal is measured as time series in *n* time points over *p* voxels $(n < p) \rightarrow$ presentable in a GLM

$$\mathbf{Y} = \mathbf{X}\mathbf{B} + \mathbf{E} \qquad \mathbf{E} \sim \mathsf{N}(\mathbf{0}, \mathbf{V} \otimes \mathbf{\Sigma})$$
$$\begin{pmatrix} y_{11} & \cdots & y_{1p} \\ \vdots & \ddots & \vdots \\ y_{n1} & \cdots & y_{np} \end{pmatrix} = \begin{pmatrix} x_{11} & \cdots & x_{1s} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{ns} \end{pmatrix} \begin{pmatrix} \beta_{11} & \cdots & \beta_{1p} \\ \vdots & \ddots & \vdots \\ \beta_{s1} & \cdots & \beta_{sp} \end{pmatrix} + \begin{pmatrix} \epsilon_{11} & \cdots & \epsilon_{1p} \\ \vdots & \ddots & \vdots \\ \epsilon_{n1} & \cdots & \epsilon_{np} \end{pmatrix}$$

hypothesis: $H_0 : \mathbf{C'B} = \mathbf{0}$

 \Rightarrow multivariate analysis is possible by means of so-called stabilized multivariate test statistics (Läuter et al., 1996 and 1998) but adjustment for temporal correlation necessary: aim of our research

Standardized Sum and Principal Component Test

creating q $(1 \le q < \min(p, n - s))$ summary variables (scores) by means of a $p \times q$ -dimensional weight matrix **D**, that is any function of the total sums of squares and cross products matrix **W** $(\mathbf{W} = SSQ_{hypothesis} + SSQ_{residuals})$

$$\mathsf{Z}_{(n\times q)} = \mathsf{Y}_{(n\times p)}\mathsf{D}_{(p\times q)}$$

 \Rightarrow using these low-dimensional scores in classical analyses then

- Standardized Sum Test: $\mathbf{d} = \operatorname{Diag}(\mathbf{W})^{-\frac{1}{2}}\mathbf{1}$
- Principal Component Test: D: computed by means of the eigenvalue problem of W
 - scale dependent: $WD = D\Lambda$, $D'D = I_c$
 - scale invariant: $WD = Diag(W)D\Lambda$, $D'Diag(W)D = I_q$

Summary

Standardized Sum and Principal Component Test

creating q $(1 \le q < \min(p, n-s))$ summary variables (scores) by means of a $p \times q$ -dimensional weight matrix **D**, that is any function of the total sums of squares and cross products matrix **W** $(\mathbf{W} = SSQ_{hypothesis} + SSQ_{residuals})$

$$\mathsf{Z}_{(n\times q)} = \mathsf{Y}_{(n\times p)}\mathsf{D}_{(p\times q)}$$

- \Rightarrow using these low-dimensional scores in classical analyses then
 - Standardized Sum Test: $\mathbf{d} = \operatorname{Diag}(\mathbf{W})^{-\frac{1}{2}} \mathbf{1}_{p}$
 - \bullet Principal Component Test: D: computed by means of the eigenvalue problem of W
 - scale dependent: $WD = D\Lambda$, $D'D = I_q$
 - scale invariant: $WD = Diag(W)D\Lambda$, $D'Diag(W)D = I_q$

Parametric adjustment for temporal correlation

Satterthwaite approximation

temporal correlation is taken into account within the test statistic \rightarrow adjusting the variance estimation and the degrees of freedom

Prewhitening

$$\begin{array}{l} \mathbf{Y} = \mathbf{X}\mathbf{B} + \mathbf{E} \ , \ \mathbf{E} \ \sim \ \mathsf{N}(\mathbf{0}, \ \mathbf{V} \otimes \mathbf{\Sigma}) \\ \rightarrow \mbox{ classical model: } \mathbf{Y}^{\star} = \mathbf{X}^{\star}\mathbf{B} + \mathbf{E}^{\star}, \ \ \mathbf{E}^{\star} \sim \ \mathsf{N}(\mathbf{0}, \ \mathbf{I}_n \otimes \mathbf{\Sigma}) \ \mbox{via} \\ \mathbf{Y}^{\star} = \mathbf{V}^{-\frac{1}{2}}\mathbf{Y}, \quad \ \mathbf{X}^{\star} = \mathbf{V}^{-\frac{1}{2}}\mathbf{X}, \quad \ \mathbf{E}^{\star} = \mathbf{V}^{-\frac{1}{2}}\mathbf{E} \end{array}$$

 \rightarrow yields an exact test when \boldsymbol{V} is known

 \Rightarrow problem:

estimation of the correlation coefficient – assuming AR(1)

Parametric adjustment for temporal correlation

Satterthwaite approximation

temporal correlation is taken into account within the test statistic \rightarrow adjusting the variance estimation and the degrees of freedom

Prewhitening

$$\begin{array}{l} \mathbf{Y} = \mathbf{X}\mathbf{B} + \mathbf{E} \ , \ \mathbf{E} \ \sim \ \mathsf{N}(\mathbf{0}, \ \mathbf{V} \otimes \mathbf{\Sigma}) \\ \rightarrow \text{ classical model: } \mathbf{Y}^{\star} = \mathbf{X}^{\star}\mathbf{B} + \mathbf{E}^{\star}, \ \mathbf{E}^{\star} \sim \mathsf{N}(\mathbf{0}, \ \mathbf{I}_n \otimes \mathbf{\Sigma}) \text{ via} \\ \mathbf{Y}^{\star} = \mathbf{V}^{-\frac{1}{2}}\mathbf{Y}, \quad \mathbf{X}^{\star} = \mathbf{V}^{-\frac{1}{2}}\mathbf{X}, \quad \mathbf{E}^{\star} = \mathbf{V}^{-\frac{1}{2}}\mathbf{E} \end{array}$$

 \rightarrow yields an exact test when \boldsymbol{V} is known

\Rightarrow problem:

estimation of the correlation coefficient – assuming AR(1)

Non-parametric adjustment for temporal correlation

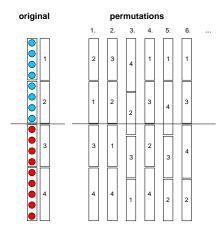
original	permutations						
	1.	2.	3.	4.	5.	6.	
0	0	•	\bigcirc	0	•	•	
0	•	•	•	•	0	•	
0	0	\bigcirc	•	\bigcirc	•	•	
0	0	•	\bigcirc	•	\bigcirc	\bigcirc	
0	•	\bigcirc	\bigcirc	\bigcirc	•	•	
0	•	\bigcirc	•	•	\bigcirc	\bigcirc	
0	0	•	\bigcirc	\circ	•	\bigcirc	
<u> </u>		•	0	0	0	•	
•	0	•	\bigcirc	•	•	\bigcirc	
•	0	\bigcirc	•	\bigcirc	\bigcirc	•	
•	•	•	•	•	•	\bigcirc	
•	•	\circ	\bigcirc	\bigcirc	\bigcirc	•	
•	0	•	•	•	•	\bigcirc	
•	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	•	
•	•	\circ	•	•	•	\bigcirc	
•	0	•	•	•	\bigcirc	•	
•	•	0	•	•	•	\bigcirc	

classical permutation

Non-parametric adjustment for temporal correlation

blockwise permutation of

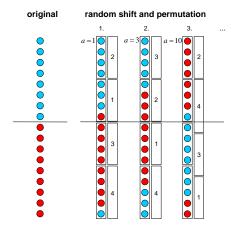
adjacent elements to account for temporal correlation



blockwise permutation

Non-parametric adjustment for temporal correlation

blockwise permutation of adjacent elements to account for temporal correlation including a random shift in order to increase the number of possible blockwise permutations



Non-parametric adjustment for temporal correlation

blockwise permutation of

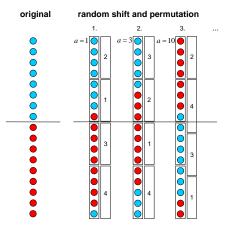
adjacent elements to account for temporal correlation

including a random shift in order to increase the number of possible

blockwise permutations

- \rightarrow in each permutation step:
 - random removal of a (0 ≤ a < n) elements on top, adding them at the end
 - block arrangement and permutation
 - calculation of the permuted test statistic

blockwise permutation including a random shift



Simulation studies for multivariate adjustments

- ... to control the empirical type I error
 - prewhitening holds the nominal test level (for at least a few hundreds of measurements, which is a common sample size in fMRI studies)
 - Satterthwaite approximation partly exceeds the test level
 - blockwise permutation including a random shift holds the nominal test level (for a block length of at least 40 even when there are just two blocks left)

Application on fMRI data: Ultimatum Game

Ultimatum Game: socio-economic application in fMRI \rightarrow subject gets an offer for division of an amount of money

 \rightarrow the difference in activation for unfair and fair offers in the anterior insula is hard to detect by univariate test statistics – better using multivariate tests?

 \Rightarrow analyzing this small homogeneous region as well as a larger heterogeneous region including the anterior insula to compare the different test statistics and adjustments

Application on fMRI data: Ultimatum Game

exemplary results of one subject

		univariate test statistics multivariate test statistics				
region	correction method	unadjusted	Bonferroni- adjusted	Standard. Sum Test	scale variant PC Test	scale invariant PC Test
anterior insula $p = 48$	Satterthwaite prewhitening blockwise permutation including a random shift	0.002 0.006 <0.001	0.105 0.283 0.048	<0.001 <0.001 0.005	0.099 0.086 0.070	0.123 0.073 0.071
region including anterior insula $p = 900$	Satterthwaite prewhitening blockwise permutation including a random shift	<0.001 0.001 <0.001	0.234 1.000 0.090	0.162 0.169 0.236	0.035 0.018 0.004	0.361 0.237 0.009

P-values for testing the difference of unfair to fair offers within the anterior insula as well as within a larger heterogenous region containing the anterior insula; univariate: the minimale P-value is given; permutations done with block length 50

Background	Stabilized multivariate tests O	Dealing with correlated sample elements	Comparison	Summary
Summ	ary			

- ⇒ stabilized multivariate tests are applicable and advantageous in fMRI analyses using adjustments for temporal correlation
 - prewhitening works well for large sample sizes
 - Satterthwaite approximation partly fails
 - blockwise permutation including a random shift turns out to be an applicable and powerful alternative method (also in the univariate case)

Background	Stabilized multivariate tests O	Dealing with correlated sample elements	Comparison	Summary
Refere	nces			

- HOLLMAN, M., MÜLLER, C., BAECKE, S., LÜTZKENDORF, R., ADOLF, D., RIEGER, J. AND BERNARDING, J.: Predicting Decisions in Human Social Interactions Using Real-Time fMRI and Pattern Classification. submitted to Human Brain Mapping, 2010.
- LÄUTER, J., GLIMM, E. AND KROPF, S.: New Multivariate Tests for Data with an Inherent Structure. Biometrical Journal 38, 1996, 5–27.
- LÄUTER, J., GLIMM, E. AND KROPF, S.: *Multivariate Tests Based on Left-Spherically Distributed Linear Scores.* Annals of Statistics 26, 1998, 1972–1988.

Acknowledgements

This work has been supported by the German Research Foundation (DFG, grant KR 2231/3-1/-2).

Thank you for your attention. daniela.adolf@med.ovgu.de