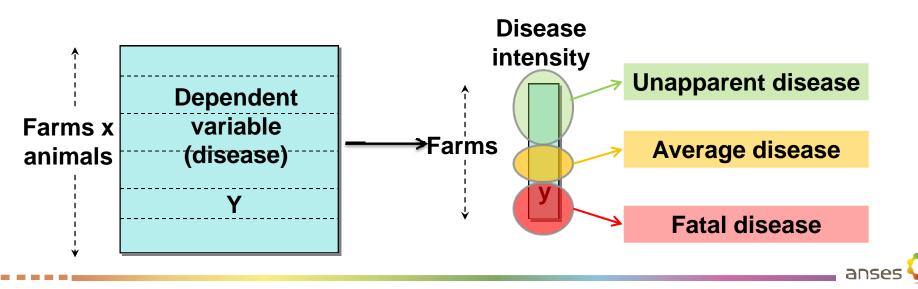


Symbolic Analysis of Hierarchical-Structured Data. Application to Veterinary epidemiology

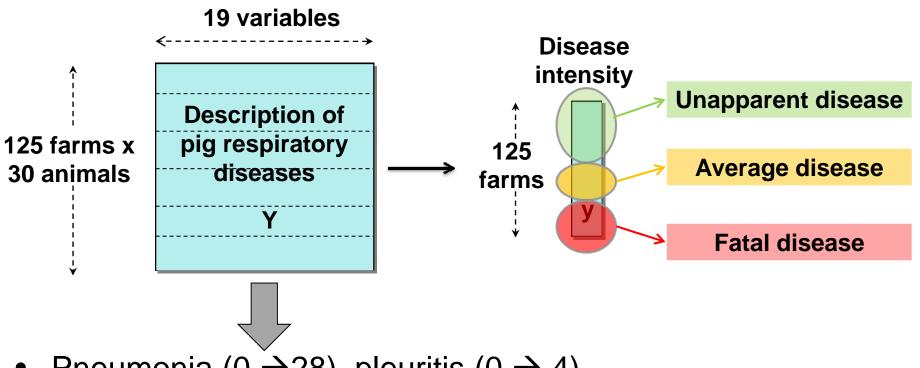
C. Fablet¹, E. Diday², S. Bougeard¹, C. Toque³ & L. Billard⁴

¹ French agency for food, environmental and occupational health safety (Anses), France
² University of Paris Dauphine, France
³ SYROKKO, France
⁴ University of Georgia, Athens, USA

19th International Conference on Computational Statistics, Paris, August 22-27, 2010

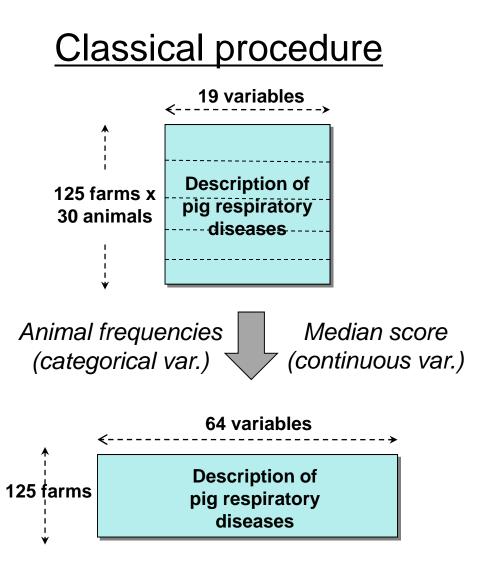


Context of veterinary epidemiological surveys


Statistical issue

- 1. Description of the relationships between the dependent variables \rightarrow variable selection,
- 2. Summary of the dependent variables into an overall single variable (*i.e.* the disease),

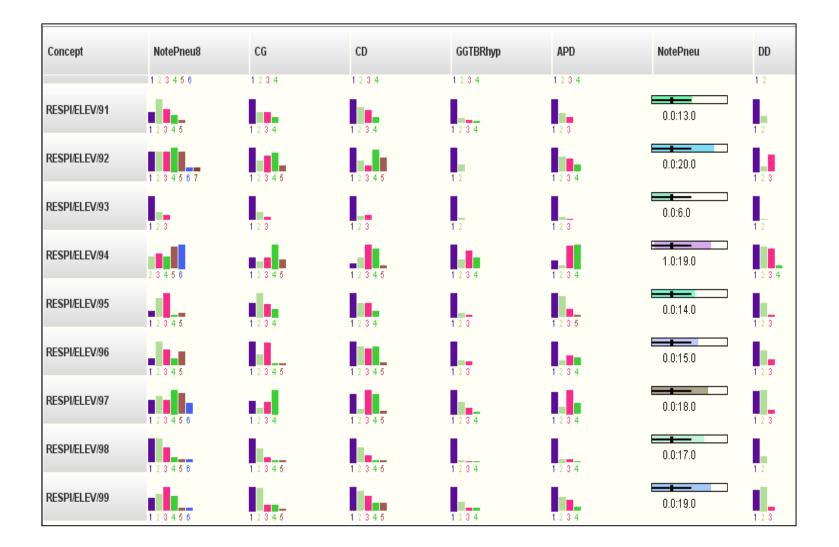
... with a hierarchical structure of observations (P animals each within N farms).


Dataset: Study of pig respiratory diseases

- Pneumonia $(0 \rightarrow 28)$, pleuritis $(0 \rightarrow 4)$,
- Lung abscess (0/1), lung nodules (0/1), healing from pneumonia (0/1),
- Hypertrophy of lung lymph nodes (0 \rightarrow 3), pericarditis (0/1),
- Frequency of coughs at 16 and 22 weeks of age.

anses 🗘

Step 1: Variable synthesis



Symbolic procedure

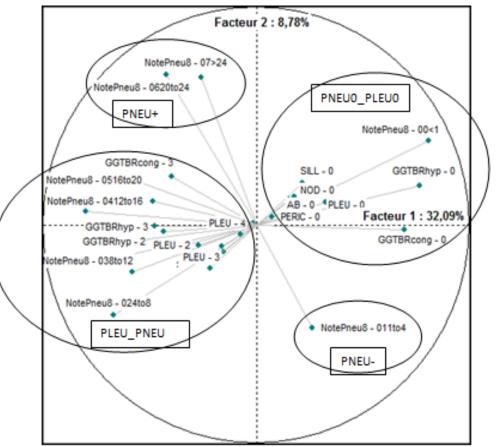
- Categorical variable: histogram of the frequencies based on 30 animals,
- Continuous variable: histogram which keep the data variation.

Step 1: Variable synthesis (symbolic results)

SYR software with the TABSYR & STATSYR modules

Step 2: Variable selection

Classical procedure


- Principal Component Analysis of the 64 variables,
- Selection of the variables with the best contribution,
- Principal Component Analysis of the selected variables.

Symbolic procedure

- Symbolic Principal Component Analysis of the 19 variables,
 - 'Global' variable selection (best var. contribution)
 - 'Quadrants' variable selection (best var. correlation),
 - Final symbolic PCA representation of the selected 'bins' variables.

Step 2: Variable selection (symbolic results)

Symbolic PCA of the 8 'bins' selected var.

- Var. group PNEU+: severe pneumonia,
- Var. group PLEU_PNEU: average level of pleuritis and pneumonia,
- Var. group PLEU0_PNEU0: few lung lesions,
- Var. group PNEU-: light pneumonia lesions.

SYR software with the ACPSYR module

Step 3: Individual clustering

Classical procedure

- Hierarchical Ascendant Classification (Ward criterion)
- Cluster description
 - Comparison of the variable means (& standard deviations) of each cluster, with the variable means on the whole sample.

Symbolic procedure

- Symbolic partitioning (inertia criterion)
- Cluster description
 - Variables sorted in order of overall discriminant power,
 - Cluster description with the most discriminant variables (or variable modalities).

Step 3: Individual clustering (symbolic results)

ClasseCF	NotePneu28	NotePneu8	FreqTxQ_22Sem	FreqTxQ_16Sem	CD
classe1	1 2 3 4 5 6 7 8 9 1011121314151618192021222324	41 2 3 4 5 6 7 8	1.205:38.043	0.0:26.733	1 2 3 4 5
classe2	1 2 3 4 5 6 7 8 10111315161819202122232425	1 2 3 4 5 6 7 8	0.917:18.072	0.0:9.302	1 2 3 4 5
classe3	1 2 3 4 5 6 7 8 9 1011121314151619202122232422	51 2 3 4 5 6 7	0.0:20.0	0.0:16.535	1 2 3 4 5
classe4	1 2 3 5 6 7 9 12131719202122232425	1 2 3 4 5 6 7	0.0:6.977	0.0:10.0	1 2 3 4 5
Hidden individuals					
Variations					

CATEGORIES WHERE INDI	VIDUAL classe2 IS THE HIGHEST					Close
category	variable	proba/mean	proba	range	range map	opposite individual
21	NotePneu28	4.000000	0.010000	0.010000		classe1
24	NotePneu28	4.000000	0.010000	0.010000		classe1
07>24	NotePneu8	4.000000	0.010000	0.010000		classe1
3	PLEU	3.294118	0.140000	0.130000		classe1
1	AB	3.111111	0.070000	0.070000		classe4
1	NOD	2.909091	0.080000	0.070000		classe1
2	PLEU	2.857143	0.250000	0.230000		classe4
1	PERIC	2.666667	0.080000	0.070000		classe1
1	PLEU	2.193548	0.170000	0.150000		classe4
8	NotePneu28	1.777778	0.040000	0.040000		classe4
4	NotePneu28	1.777778	0.120000	0.110000		classe4
1	GGTBRhyp	1.731959	0.420000	0.360000		classe4
1	SILL	1.611940	0.270000	0.180000		classe4
6	NotePneu28	1.500000	0.060000	0.050000		classe4
024to8	NotePneu8	1.493976	0.310000	0.270000		classe4
1	APD	1.411765	0.180000	0.140000		classe4

SYR software with the CLUSTSYR module

Conclusion

- Symbolic analysis to process hierarchical-structured data without reducing information,
- Relevant and useful methods for veterinary epidemiological surveys (competes with GEE including a random measurement effect),
- Available software (SYR).

Perspectives

- Other symbolic methods available for various aims,
- Extension to multiblock modelling (hierarchical-structured observations and variables).

Symbolic Analysis of Hierarchical-Structured Data. Application to Veterinary epidemiology

C. Fablet¹, E. Diday², S. Bougeard¹, C. Toque³ & L. Billard⁴

¹ French agency for food, environmental and occupational health safety (Anses), France
² University of Paris Dauphine, France
³ SYROKKO, France
⁴ University of Georgia, Athens, USA

19th International Conference on Computational Statistics, Paris, August 22-27, 2010

