

University of Minho Dept. of Production and Systems Engineering

> NON PARAMETRIC CONFIDENCE INTERVALS FOR ROC CURVES COMPARISON

Ana Cristina Braga: acb@dps.uminho.pt Lino Costa: lac@dps.uminho.pt Pedro Nuno Oliveira: pno@dps.uminho.pt

OBJECTIVES

 Development of a new methodology which allows the comparison of ROC curves that cross each other;

 Identification of the regions of the ROC space in which the tests have better performance;

 Construction of nonparametric confidence intervals for measures proposed.

COMPARISON OF ROC CURVES

 $\overline{\mathbf{F}}$

METHODOLOGY

1. Sampling the ROC curves

- Sampling lines starting from a reference point
- Intersection points of the sampling lines with the ROC curves

Euclidean distance from the intersection points to the reference point

2. Measures

- Extension proportion of the space where a curve is better than other
- Location regions of the space where a curve is better than other

METHODOLOGY (CONT.)

3. Nonparametric statistical evaluation

 Statistical Evaluation of the Difference between Areas - Permutation test
Confidence Interval for the Difference of the areas - bootstrap resampling

LOCATION MEASURE

 $\overline{=}$

NONPARAMETRIC STATISTICAL TEST

- Based on the notion of permutation tests, the <u>difference of the areas</u> between the two empirical ROC curves are permuted;
- Bootstrapped confidence intervals are calculated;
- All computations performed using R package.

SIMULATION STUDIES

Conditions:

- Generate distributions of abnormal ($f_A(x)$) and
- normal $(f_N(x))$ for two modalities; Greater values of variable x correspond to the abnormal status;
- $X_N \sim N(50, 25)$, $X_A \sim N(60, 25)$ and $n_A = n_N$;
- Sampling lines: K = 100 .

SIMULATION (RESULTS)

 $\overline{\mathbf{F}}$

	$n_A = n_N$		AUC1	SE1	AUC2	SE2	AUC1-AUC2
	25	Mean	0.918	0.0384	0.925	0.0358	-0.00626
		Median	0.922	0.039	0.926	0.0363	-0.008
		minimum	0.813	0.0073	0.826	0.0023	-0.1248
		maximum	0.992	0.0657	0.998	0.0595	0.1664
	50	Mean	0.924	0.0256	0.920	0.0264	0.00394
		Median	0.924	0.0259	0.921	0.0266	0.004
		minimum	0.816	0.0087	0.806	0.0130	-0.1236
		maximum	0.985	0.0428	0.971	0.0433	0.1236
	100	Mean	0.922	0.0185	0.922	0.0183	-0.00048
		Median	0.923	0.0185	0.923	0.0181	0.0001
		minimum	0.867	0.0113	0.855	0.0107	-0.0834
		maximum	0.967	0.0253	0.965	0.0265	0.0649

SIMULATION (RESULTS)

 $\overline{=}$

Z Test B Test	n	Rejection	No Rejection		
	25	7	4		
Rejection	50	7	1		
	100	12			
	25	0	189		
No Rejection	50	1	191		
	100	4	183		

	# Cross	0	1	2	3	4	≥ 5
	n=25	31	61	60	29	18	1
Freq.	n=50	12	48	41	36	25	38
	n=100	10	31	30	41	32	56

EMPIRICAL ROC CURVES (SIMULATION EXAMPLE)

 $\overline{\mathbf{F}}$

BOOTSTRAP CI FOR DIFFERENCES

 $\overline{\overline{}}$

0.008 0.006 0.004 an in an an in an ard 123 Area 0.002 0.000 -0.002 -0.004 1 20 60 0 40 80

Degrees

Areas Between ROC Curves

HYPOTHETICAL EXAMPLE (ZHANG)

HYPOTHETICAL EXAMPLE (ZHANG)

-0.02247822 < diff (boot)< 0.01017388

Areas Between ROC Curves

CONCLUSIONS

The proposed methodology allows partial and global comparisons of two ROC curves without a fixing FPF; Graphical representation that elucidates the dominance regions in terms of sensitivity and specificity; Nonparametric alternative based on bootstrap resampling for the comparison of two ROC curves when they cross each other.

FUTURE WORK

 To study the randomness of the crossing points between ROC curves;

 To extend the methodology to the comparison of more than two ROC curves.

REFERENCES

- J. A. Hanley and B. J. McNeil. A Method of Comparing the Areas Under Receiver Operating Characteristic Curves Derived from the Same Cases. *Radiology*, *148(3):839-843*, *1983. ISSN 0033-*8419.
- E. R. DeLong, D. M. DeLong, and D. I. Clarkepearson. Comparing The Areas Under 2 or More Correlated Receiver Operating Characteristic Curves - A Nonparametric Approach. *Biometrics*, 44(3):837-845, Sep 1988. ISSN 0006-341x.
- H. E. Rockette, N. A. Obuchowski, and D. Gur. Nonparametric-Estimation of Degenerate ROC Data Sets Used For Comparison of Imaging-Systems. *Investigative Radiology*, 25(7):835-837, Jul 1990. ISSN 0020-9996.
- D. K. McClish. Analyzing a Portion of the ROC Curve. Medical Decision Making, 9(3):190-195, Jul-Sep 1989. ISSN 0272-989x.
- S. Wieand, M. H. Gail, B. R. James, and K. L. James. A Family of Nonparametric Statistics for Comparing Diagnostic Markers with Paired or Unpaired Data. *Biometrika*, 76(3):585-592, Sep 1989. ISSN 0006-3444.
- Y. L. Jiang, C. E. Metz, and R. M. Nishikawa. A receiver operating: Characteristic partial area index for highly sensitive diagnostic tests. *Radiology*, 201(3):745-750, DEC 1996. ISSN 0033-8419. 1995 RSNA Scientific Assembly, CHICAGO, IL, NOV 26-DEC 01, 1995.
- D. D. Zhang, X. H. Zhou, D. H. Freeman, and J. L Freeman. A Non-Parametric Method for The Comparison of Partial Areas Under ROC Curves and Its Application to Large Health Care Data Sets. Statistics In Medicine, 21(5):701-715, Mar 2002. ISSN 0277-6715.
- L. E. Dodd and M. S. Pepe. Partial AUC estimation and regression. *Biometrics*, 59(3):614-623, SEP 2003. ISSN 0006-341X.
- C. M. Fonseca and P. J. Fleming. On the performance assessment and comparison of stochastic multiobjective optimizers. In *Proceedings of Parallel Problem Solving from Nature IV, pages 584-593*. Springer, 1996.

18

8/18/2010