Evaluation of Deformable Image Registration Spatial Accuracy Using a Bayesian Hierarchical Model

Ying Yuan

Department of Biostatistics The University of Texas, MD Anderson Cancer Center

Joint work with Valen Johnson, Richard Castillo and Thomas Guerrero

Ying Yuan Evaluation of Deformable Image Registration Spatial Accurac

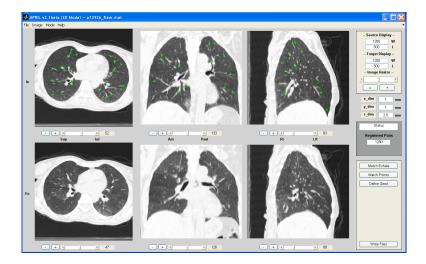
A (10) A (10) A (10)

Outline

- Overview of Data and Goals
- Bayesian model for DIR/mulitple rater Data
- Application
- Summary

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Deformable image registration (DIR) methods


- The use of deformable image registration (DIR) methods is standard practice in the administration and management of radiation therapy for thoracic malignancies.
- The DIR provides the spatial correspondence between the underlying anatomy in a source image and similar anatomy in one or more target images.
- No rigorous framework is available for comparing the relative performance of the various DIR algorithms.

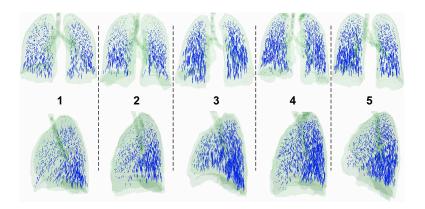
(日本) (日本) (日本)

Data description

- Images collected from esophageal cancer who were free from pulmonary disease
- Extreme exhale images regarded as source images; extreme inhale images regarded as target images
- Landmarks were chosen to be vessel or bronchial bifurcations
- 1000 landmarks manually identified using APRIL software by a single expert reader in 5 pairs of thoracic 4D CT images

• (1) • (1) • (1)

・ロト ・部ト ・ヨト ・ヨト


æ

Data description (cont)

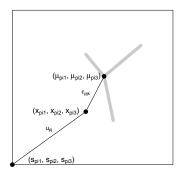
- Two deformable image registration (DIR) algorithms mapped landmarks in source images to target images
 - Optical flow method (OFM) (Horn and Schunck, 1981; Guerrero et al 2006)
 - Moving Least Squares (MLS) method (Schaefer et al 2006).
- 1000 target landmarks identified twice by reader 1 and once by readers 2 and 3.

A (10) A (10)

Five images

Ying Yuan Evaluation of Deformable Image Registration Spatial Accurac

< **□** > < **≥**


Analysis goals

- Characterize reader errors across and within image sets.
- Compare accuracy of two (or more) DIR algorithms across image sets

• (1) • (1) • (1)

Expert readings

 Expert readers provide discretized spatial location of landmark in source image

A model for expert reader data

Let μ_{pij} denote the true value of coordinate *j* for landmark *i* in source image *p*, x_{pijk} denote latent (unobserved) continuous version of reader's landmark identification, and s_{pijk} denote the corresponding discretized reading obtained from expert reader *k*.

$$egin{array}{rll} \mathbf{x}_{ extsf{pijk}} &\sim & m{N}(\mu_{ extsf{pijk}}, au_{ extsf{pijk}}^2) \ m{s}_{ extsf{pijk}} &= & \lfloor m{x}_{ extsf{pijk}}
floor, \end{array}$$

where *s*_{pijk} satisfies

$$s_{\text{pijk}} \leq x_{\text{pijk}} < s_{\text{pijk}} + 1. \tag{1}$$

・ 戸 ト ・ 三 ト ・ 三 ト

Likelihood

Conditionally on μ_{pij} and τ_{pjk}^2 , it follows that the likelihood function for the reader landmark identifications $\mathbf{s} = \{s_{pijk}\}$ can be expressed as

$$\mathcal{L}(\boldsymbol{s}|\mu_{pij},\tau_{pjk}^{2}) = \prod_{p=1}^{5} \prod_{i=1}^{200} \prod_{k=1}^{4} \frac{1}{\tau_{pjk}} \exp\left\{-\frac{1}{2}\left(\frac{x_{pijk}-\mu_{pij}}{\tau_{pjk}}\right)^{2}\right\}$$
$$I(\boldsymbol{s}_{pijk} < x_{pijk} < \boldsymbol{s}_{pijk} + 1).$$

< 同 > < 三 > < 三

Prior distributions

$$egin{array}{lll} & au_{
m pjk}^2 & \sim & IG(lpha_{jk},1/\lambda_{jk}). \ & \pi(lpha_{jk},\lambda_{jk}) & \propto & \sqrt{lpha_{jk}PG(1,lpha_{jk})-1}/\lambda_{jk} \ & \pi(\mu_{
m pij}) & \propto & 1, \end{array}$$

where $IG(\cdot, \cdot)$ denote the inverse gamma distribution and $PG(\cdot, \cdot)$ denotes the polygamma function.

▲圖▶ ▲ 国▶ ▲ 国▶

Model for DIR algorithm data

- DIR algorithms provide continuous mappings between the source image volume and the target image volume, which means that errors must be correlated within each dimension
- Let y_{pijl} denote voxel coordinate *j* for landmark *i* in source image *p* identified by DIR algorithm *l*. In image *p*, let y_{pijl} = (y_{p1jl},..., y_{p200jl}) and μ_{pj} = (μ_{p1j},..., μ_{p200j}), and define the distance between two landmarks *i* and *i'* to be

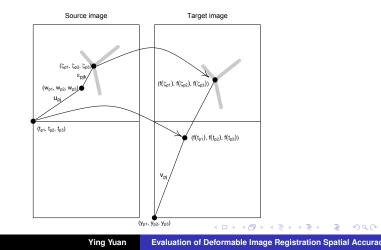
$$d_{
ho ii'} = ||\mu_{
ho i} - \mu_{
ho i'}|| = \sqrt{\sum_{j=1}^{3} (\mu_{
ho ij} - \mu_{
ho i'j})^2}.$$
 (2)

Gaussian process

 we assume that for each image, coordinate readings from the DIR algorithm within each dimension follow a Gaussian process (GP) of the form

$$m{y}_{
m \textit{pjl}} \sim m{N}(m{\mu}_{
m \textit{pj}},m{\Omega}_{
m \textit{pjl}}).$$

Here, Ω_{pjl} is an exponential covariance matrix with (i, i') entry given by


$$\boldsymbol{\Omega}_{\boldsymbol{\rho}\boldsymbol{j}\boldsymbol{l}}(\boldsymbol{i},\boldsymbol{i}') = \sigma_{\boldsymbol{\rho}\boldsymbol{j}\boldsymbol{l}}^{2} \exp\left(-\gamma_{\boldsymbol{\rho}\boldsymbol{j}\boldsymbol{l}}\boldsymbol{d}_{\boldsymbol{\rho}\boldsymbol{i}\boldsymbol{i}'}\right),$$

where γ_{pjl} is an unknown decay parameter controlling correlations among coordinates at different locations in an image. Small values of γ_{pjl} induce strong correlations.

(日)

Discretization uncertainties

Localizations based on DIR algorithms suffer from discretization uncertainties in both the source and target image.

Nugget effect

Hence, we add a "nugget" variance component of 1/6 + τ²_{pj1} to the diagonal elements of Ω_{pjl}. This leads to a GP covariance matrix Σ_{pjl} with elements

$$\boldsymbol{\Sigma}_{pjl}(i,i') = \begin{cases} \sigma_{pjl}^2 \exp(-\gamma_{pjl}\boldsymbol{d}_{pii'}) & i \neq i' \\ \sigma_{pjl}^2 + 1/6 + \tau_{pj1}^2 & i = i'. \end{cases}$$
(3)

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Prior distributions

$$\begin{split} \sigma_{pjl}^2 &\sim IG(\omega_{jl}, 1/\beta_{jl}) \\ \pi(\omega_{jl}, \beta_{jl}) &\propto \omega_{jl} \sqrt{\omega_{jl} PG(1, \omega_{jl}) - 1} / \beta_{jl} \\ \pi(\gamma_{pjl}) &\propto \sqrt{n_p \text{tr}(\mathbf{U}^2) - (\text{tr}(\mathbf{U}))^2}, \end{split}$$

where $\mathbf{U} = (\mathbf{D}_{p} * \mathbf{\Sigma}_{pjl})\mathbf{\Sigma}_{pjl}^{-1}$ and $\operatorname{tr}(\mathbf{U})$ is the trace of the matrix \mathbf{U} with \mathbf{D}_{p} denoting the distance matrix between landmarks with elements defined in, and $\mathbf{D}_{p} * \mathbf{\Sigma}_{pjl}$ denoting the element-wise product of \mathbf{D}_{p} and $\mathbf{\Sigma}_{pjl}$.

Inference

- Fit the model using hybrid Gibbs/Metropolis-Hastings method
- To summarize the performance of expert readers and DIR algorithms in the three-dimensional space, we define the expected registration error for the *k*th expert reader to be

$$e_{pk} = E \left[\sqrt{(x_{pi1k} - \mu_{pi1})^2 + (x_{pi2k} - \mu_{pi2})^2 + (x_{pi3k} - \mu_{pi3})^2} \right]$$

Table: Posterior mean and standard error of registration errors for three expert reader and the MLS and OFM algorithms. The posterior standard error is shown in parentheses.

	Reader			DIR	
Image	1	2	3	MLS	OFM
1	0.51 (0.22)	0.46 (0.20)	0.62 (0.27)	1.93 (0.96)	9.64 (6.10)
2	0.44 (0.19)	0.37 (0.16)	0.60 (0.26)	1.99 (1.03)	8.70 (6.02)
3	0.57 (0.26)	0.47 (0.21)	0.83 (0.38)	2.07 (1.01)	12.62 (8.74)
4	0.43 (0.19)	0.38 (0.17)	0.52 (0.22)	1.97 (0.96)	6.76 (3.88)
5	0.58 (0.26)	0.48 (0.23)	0.87 (0.44)	2.72 (1.69)	5.71 (3.93)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Conclusions

- We have proposed a Bayesian hierarchical model to evaluate the spatial accuracy for deformable image registration algorithms based on landmarks identified by human experts.
- Our model explicitly accounts for the variation among multiple experts and the discretization process of readings.
- When evaluating the spatial accuracy of the DIR algorithm, our model accounts for the random errors associated with the experts' registration errors and utilizes a hierarchical model to borrow information across multiple images.
- A Gibbs sampling algorithm was developed to fit the data efficiently.

<四>< 回 > < 回 > < 回 > <

Thank you !

Ying Yuan Evaluation of Deformable Image Registration Spatial Accuracy

◆□▶ ◆□▶ ◆□▶ ◆□▶ -

æ