

The Aggregate Association Index

Eric J. Beh

School of Mathematical and Physical Sciences University of Newcastle, Australia

COMPSTAT 2010, Paris, France – August 24

The 2x2 Contingency Table

Cross-classify a sample of size n according to two dichotomous variables

	Column 1	Column 2	Total
Row 1	P ₁₁	p ₁₂	p _{1•}
Row 2	p ₂₁	p ₂₂	p ₂ •
Total	p •1	p •2	1

"Let us blot out the contents of the table, leaving only the marginal frequencies . . . [they] by themselves supply no information on . . . the proportionality of the frequencies in the body of the table . . . "

– Fisher (1935)

Define

$$P_{1} = \frac{p_{11}}{p_{1\bullet}}$$

$$X^{2}(P_{1} | p_{1\bullet}, p_{\bullet 1}) = n \left(\frac{P_{1} - p_{\bullet 1}}{p_{2\bullet}}\right)^{2} \left(\frac{p_{1\bullet}p_{2\bullet}}{p_{\bullet 1}p_{\bullet 2}}\right)$$

Bounds of P₁

Duncan & Davis (1953) Bounds

$$L_1 = \max\left(0, \frac{n_{\bullet 1} - n_{2\bullet}}{n_{1\bullet}}\right) \le P_1 \le \min\left(\frac{n_{\bullet 1}}{n_{1\bullet}}, 1\right) = U_1$$

 $100(1 - \alpha)\%$ Confidence Bounds

$$L_{\alpha}^{*} = p_{\bullet 1} - p_{2 \bullet} \sqrt{\frac{\chi_{\alpha}^{2}}{n} \left(\frac{p_{\bullet 1} p_{\bullet 2}}{p_{1 \bullet} p_{2 \bullet}}\right)} < P_{1} < p_{\bullet 1} + p_{2 \bullet} \sqrt{\frac{\chi_{\alpha}^{2}}{n} \left(\frac{p_{\bullet 1} p_{\bullet 2}}{p_{1 \bullet} p_{2 \bullet}}\right)} = U_{\alpha}^{*}$$
$$L_{\alpha} = \max\left(0, L_{\alpha}^{*}\right) < P_{1} < \min\left(1, U_{\alpha}^{*}\right) = U_{\alpha}$$

If the area under $X^2(P_1)$ but above χ^2_{α} is large than there may be evidence to suggest that there is a significant association (at the α level of significance) between the two dichotomous variables.

Aggregate Association Index (AAI)

Example – Fisher's Twin Data

Fisher's data studies 30 criminal twins and classifies them according to whether they are a monozygotic twin or a dizygotic twin. The table also classifies whether their same sex twin has been convicted of a criminal offence.

	Convicted	Not convicted	Total
Monozygotic Dizygotic	10 2	3 15	13 17
Total	12	18	30

Pearson chi-squared statistic is 13.032.

○ p-value = $0.0003 \rightarrow$ there is evidence of a strong association between the two variables.

○ The product moment correlation $= 0.6591 \rightarrow \text{positive association}$

Example – Fisher's Twin Data			THE UNIVERSITY OF NEWCASTLE AUSTRALIA
	Convicted	Not convicted	Total
Monozygotic Dizygotic Total	10 2 12	3 15 18	13 17 30

But, as Fisher (1935) did, suppose we "blot out" the cells of the table.

Question: What information do the margins provide in understanding the extent to which the variables are associated.

We shall calculate the aggregate association index

there *may* exist a significant association between twin type & conviction status

$$P_1$$

$$X^{2}(P_{1}) = \frac{221}{216} \left(\frac{30P_{1} - 12}{17}\right)^{2}$$

where $0 \le P_1 \le 0.9231$

 $A_{\alpha} = A_{\alpha}^{+} + A_{\alpha}^{-}$

Fisher's Twin Data (...revisited)

	Convicted	Not convicted	Total	
Monozygotic	10	3	13	
Dizygotic	2	15	17	
Total	12	18	30	
$\Lambda - 61.83$				
$A_{0.05} = 61.83$				
0.05				
(
▲ +	1 (1)	A - 1 <i>5</i>	10	
$A_{0.05}^+ = 46.43 A_{0.05}^- = 15.40$				

Therefore based solely on the marginal information we can determine that the variables are three times more likely to be positively associated than negatively associated

Discussion

- The index provides an indication of the extent to which two dichotomous variables are statistically significantly association given only the marginal information
- Index is not meant to infer the individual level correlation of the variables, but to provide a measure reflecting how likely the two variables *may* be associated.

Further Issues:

- Investigate the applicability of index for G (>1) 2x2 tables, including incorporating covariate information (ecological inference)
- ✤ Has links with the correspondence analysis of aggregate data
- Link with Fisher's exact test