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Credit Application Scoring

I Credit application classification (CAC) is one important
application of credit scoring

I There is a legislative requirement for certain products, like
UPLs, to provide an explanation for rejecting applications

I this manifest as a preference for simple models: primarily
logistic regression

I LDA often competitive in this context

I CAC usually subject to population drift: distribution of
prediction data different to training data. Common problem in
many applications.

I Objective here is to see how streaming technology might be
adapted to handle drift without an explicit drift model.
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I Many approaches proposed to handle population drift. Most
not suitable for CAC.

I approach in consumer credit is to monitor for CAC
performance degradation, and then rebuild: define new
window of recent training data.

I This is a method related to a classification performance
metric.

I We will deploy streaming methods, which respond to changes
in model parameters, to reduce degradation between rebuilds
(which are inevitable). 4/28



I CAC is often posed as a two class problem

I classes are good or bad risk, according to some definition,
often similar to “bad if 3 or more months in arrears”

I data extracted from application form - personal details,
background, finances - and other sources (e.g. CCJs).

I Variety of transformations explored at classifier building stage

I Some more complex timing data issues in CAC which we
ignore
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Streaming Data I

A data stream consists of a sequence of data items arriving at high
frequency, generated by a process that is subject to unknown
changes (generically called drift).

Many examples, often financial, include:

I credit card transaction data (6000/s for Barclaycard Europe)

I stock market tick data

I computer network traffic

The character of streaming data calls for algorithms that are

I efficient, one-pass - to handle frequency

I adaptive - to handle unknown change
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Streaming Data II

A simple formulation of streaming data is a sequence of
p-dimensional vectors, arriving at regular intervals

. . . , xt−2, xt−1, xt

where xi ∈ Rp.

Since we are concerned with K -class classification, need to
accommodate a class label. Thus, at time t we can conceptualise
the label-augmented streaming vector yt = (Ct , xt)′, where
Ct ∈ {c1, c2, . . . , ck}.

However, in real applications Ct arrives at some time s > t, and
the streaming classification problem is concerned with predicting
Ct on the basis of xt in an efficient and adaptive manner.

7/28



Streaming Data and Classification

Implicit assumption: single vector arrives at any time.

Assumption common in literature, which we use, is that the data
stream is structured as

. . . , (Ct3 , xt2), (Ct2 , xt1), (Ct1 , xt),

That is, the class-label arrives at the next tick.

We will treat the streaming classification problem as: predict the
class of xt , and adaptively (and efficiently) update the model at
time xt+1, when Ct arrives.

This is naive, but the problem is challenging even formulated thus.
Will return to label timing later.
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Streaming Data and Classification

Can use the usual formulation for classification

P(Ct |xt) =
p(xt |Ct)P(Ct)

p(xt)
(1)

and construct either

I Sampling paradigm classifiers, focusing on class conditional
densities

I Diagnostic paradigm classifiers, directly seeking the posterior
probabilities of class membership

Note the we will usually restrict attention to the K = 2 class
problem.

Eq.1 where population drift can happen: the prior, P(Ct), the class
conditionals, p(xt |Ct), or both.
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Notional drift types

1. Jump
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Drift: CAC Examples

Consumer credit classification (conditionals)

11/28



Consumer credit classification (prior)
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Methods

A variety of approaches for streaming classification have been
proposed, including

I Data selection approaches with standard classifiers. Most
commonly, use of a fixed or variable size window of most
recent data. But how to determine size in either case?

I Ensemble methods. One example is the adaptive weighting of
ensemble members changing over time. This category also
includes learning with expert feedback.

As noted above, CAC usually uses a static classifier with responsive
rebuilds.
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Forgetting-factor methods

We are interested in modifying standard classifiers to incorporate
forgetting factors - parameters that control the contribution of old
data to parameter estimation.

We adapt ideas from adaptive filter theory, to tune the forgetting
factor automatically.

Simplest to illustrate with an example: consider computing the
mean vector and covariance matrix of a sequence of n multivariate
vectors. Standard recursion

mt = mt−1 + xt , µ̂t = mt/t, m0 = 0

St = St−1 + (xt − µ̂t)(xt − µ̂t)T , Σ̂t = St/t, S0 = 0
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For vectors coming from a non-stationary system, simple averaging
of this type is biased.

Knowing precise dynamics of the system gives chance to construct
optimal filter. However, not possible with streaming data (though
interesting links between adaptive and optimal filtering).

Incorporating a forgetting factor, λ ∈ (0, 1], in the previous
recursion

nt = λnt−1 + 1, n0 = 0

mt = λmt−1 + xt , µ̂t = mt/nt

St = λSt−1 + (xt − µ̂t)(xt − µ̂t)T , Σ̂t = St/nt

λ down-weights old information more smoothly than a window.
Denote these forgetting estimates as µ̂λt , Σ̂λ

t , etc.

nt is the effective sample size or memory. λ = 1 gives offline
solutions, and nt = t. For fixed λ < 1 memory size tends to
1/(1− λ) from below.
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Setting λ

Two choices for λ, fixed value, or variable forgetting, λt . Fixed
forgetting: set by trial and error, change detection, etc (cf.
window).

Variable forgetting: ideas from adaptive filter theory suggest
tuning λt according to a local stochastic gradient descent rule

λt = λt−1 − α
∂ξ2

t

∂λ
, ξt : residual error at time t, α small (2)

Efficient updating rules can implemented via results from
numerical linear algebra (O(p2)).

Performance very sensitive to α. Very careful implementation
required, including bracket on λt and selection of learning rate α.

Framework provides an adaptive means for balancing old and new
data. Note slight hack in terms of interpretation of λt .
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Tracking illustrations

Does fixed forgetting respond to an abrupt change?
5D Gaussian, two choices of λ, change in σ23: gradient
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Tracking mean vector and covariance matrix in 2D.
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Adaptive-Forgetting Classifiers

Our recent work involves incorporating these self-tuning forgetting
factors in

I Parametric
I Covariance-matrix based
I Logistic regression

I non-parametric
I Multi-layer perceptron

(sampling paradigm) (diagnostic paradigm)

We call these AF (adaptive-forgetting) classifiers.
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Streaming Quadratic Discriminant Analysis

QDA can be motivated by reasoning about relationship of between
and within group covariances, or assuming class conditional
densities are Gaussian.

For static data, latter assumption yields discriminant function for
jth class

gj(x) = log(P(Cj))− 1

2
log(|Σj |)−

1

2
(x − µj)

T Σ−1
j (x − µi ) (3)

where µj and Σj are mean vector and covariance matrix,
respectively, for class j .

Frequently, plug-in ML estimates for unknown parameters: µj , Σj ,
P(Cj).

Idea here is to plug-in the AF estimates, µ̂λt etc.
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Results in CA’s thesis show that the AF framework above can be
generalised, using likelihood arguments, to the whole exponential
family. Thus, the priors, P(Ct) can also be handled in a streaming
manner.

The approach is then:

I Forgetting factor for prior (binomial/multinomial)

I Forgetting factor for each class

The class of xt is predicted when it arrives. Immediately thereafter,
the class-label arrives, and the true class parameters are updated.

This will be problematic for large K or very imbalanced classes:
few updates complicates the interpretation of the update equation
for λt (Eq. 2).

21/28



Streaming LDA

The discriminant function in Eq.3 reduces to a linear classifier
under various constraints on the covariance matrices (or mean
vectors).

We consider the case of a common covariance matrix:
Σ1 = Σ2 = . . . = ΣK = Σ. Again, we will substitute streaming
estimates µλj , Σλ.

Have a couple of implementations options. One approach is

I Forgetting factor for prior

I Forgetting factor for each class

I Compute pooled covariance matrix, using streaming prior
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Performance assessment

Performance assessment and summary is difficult for data streams,
particularly with real data, because of the unknown character of
the drift. We use time-averaged point wise performance measures.
CAC practitioners often favour either

I the bad rate among accepts (BRA) - the proportion of bad
risk among the accepted population, for a fixed population
acceptance level.

I The area under the ROC curve (despite recently discovered
interpretation issues (Hand, 2009)).

We consider BRAA computed monthly, for a fixed proportion of
accepts. Then, consider the relative difference between the BRAA
for a target classifier with the base classifier.
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Timing issues

We treat the time increment as a day. Within this, there are the
following possibilities per day

1. no data - we ignore

2. one labeled data - proceed as above

3. more than one labeled data

Two choices:

I immediate updating - update with every new application,
arbitrary order

I daily updating - update using the mean vector of a day’s
applications
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Data and Results

92258 UPL applications from 1993 -1997. Twenty predictor
variables, typical of the application.

Report performance improvement in BRAA compared to LDA on
first year of data.

Comparison includes

I contiguous windows

I Moving window

I fixed λ LDA

I variable λ LDA
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LEFT: Daily, RIGHT: Immediate
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I AF LDA methods consistently outperform the benchmark

I Best performance for fixed λ - but how to set in advance?

I No real difference between daily and immediate updating
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Conclusion

AF methods have some merit for reducing performance
degradation between classifier rebuilds. We have also developed
AF versions of logistic regression which exhibits similar behaviour
(Anagnostopoulos et al, 2009; Pavlidis et al, 2010).

Need to give proper attention to

I timing issues. Labels arrive in a much more complicated
manner, and the methodology needs extension to handle this.

I optimisation parameters. Setting/changing.
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