A Constrained Condition-Number LS Algorithm with Its Applications to Reverse Component Analysis and Generalized Oblique Procrustes Rotation

Kohei Adachi

Osaka University, Japan

1. Introduction

1.1 Problem & SVD Reparameterization

1.2 Organization of Presentation

1.1 Problem & SVD Reparameterization

I consider the constrained LS problem Min $f(\mathbf{H}) = ||\mathbf{Y} - \mathbf{H}||^2$ over \mathbf{H} s.t. $\underline{CN}(\mathbf{H}) \le u$ Condition Number Constant For minimizing $f(\mathbf{H})$, I propose to reparameterize **H** using its SVD as $\mathbf{H} = a\mathbf{K}\Lambda\mathbf{L}'$ with **K'K=L'L=I**_r, $\Lambda = \text{diag}(\lambda_1, ..., \lambda_r)$ Then, the problem is reformulated as Min $f(a, \mathbf{K}, \Lambda, \mathbf{L}) = ||\mathbf{Y} - a\mathbf{K}\Lambda\mathbf{L'}||^2$ over $a, \mathbf{K}, \Lambda, \mathbf{L}$ s.t. $1 \le \lambda_l \le u$ (l=1,...,r)

1.2 Organization of Presentation

Min
$$f(a, \mathbf{K}, \Lambda, \mathbf{L}) = ||\mathbf{Y} - a\mathbf{K}\Lambda\mathbf{L}'||^2$$

over $a, \mathbf{K}, \Lambda, \mathbf{L}'$ s.t. $1 \le \lambda_l \le u$

The remaining parts are organized as: **2.** Algorithm

for minimizing $f(a, \mathbf{K}, \Lambda, \mathbf{L'})$

3. Simulation Study

for evaluating the algorithm with *reverse component analysis*

4. Application

to generalized oblique Procrustes rotation 5. Conclusion

2. Algorithm

Min $f(a, \mathbf{K}, \Lambda, \mathbf{L}) = ||\mathbf{Y} - a\mathbf{K}\Lambda\mathbf{L}'||^2$ over $a, \mathbf{K}, \Lambda, \mathbf{L}'$ s.t. $1 \le \lambda_l \le u$

is attained by alternately iterating the a-, K-, L- and Λ -steps described in the next 2.1 and 2.2

2.1 a-, L-, and K-steps 2.2 Λ-step

2.1 a-, K-, and L-steps

a-Step: min
$$f(\boldsymbol{a}|\mathbf{K},\Lambda,\mathbf{L}) = ||\mathbf{Y}-\boldsymbol{a}\mathbf{K}\Lambda\mathbf{L}'||^2$$
 over \boldsymbol{a}

simply attained by **regression without intercept**

L-Step: min
$$f(\mathbf{L}|a,\mathbf{K},\Lambda) = ||\mathbf{Y}-a\mathbf{K}\Lambda\mathbf{L'}||^2$$

over \mathbf{L} s.t. st $\mathbf{L'L} = \mathbf{I}_r$

K-Step: min $f(\mathbf{K}|a,\Lambda,\mathbf{L}) = ||\mathbf{Y}'-a\mathbf{L}\Lambda\mathbf{K}'||^2$ over **K** s.t. st $\mathbf{K'K} = \mathbf{I}_r$

are equivalent problems attained (explicitly) by **orthogonal Procrustes rotation**

2.2 Λ-step

 $\min f(\mathbf{\Lambda}|a,\mathbf{K},\mathbf{\Lambda},\mathbf{L}) = \|\mathbf{Y}-a\mathbf{K}\mathbf{\Lambda}\mathbf{L}'\|^2$ $= ||\mathbf{Y}||^2 + \text{tr}a^2 \mathbf{\Lambda}^2 - 2\text{tr}\mathbf{Diag}(a\mathbf{L'Y'K})\mathbf{\Lambda}$ $= ||\mathbf{Y}||^2 + \sum_{I} (a^2 \lambda_I^2 - 2d_I \lambda_I)$ over $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_r)$ s.t. $1 \le \lambda_l \le u$ with d_l the (l, l)th element of aL'Y'Kattained by finding the λ_{I} minimizing $a^{2}\lambda_{I}^{2} - 2d_{I}\lambda_{I}$ within $1 \leq \lambda_{I} \leq u$ $\lambda_{l} = \begin{cases} d_{l} / a^{2} & \text{iff } 1 \leq d_{l} / a^{2} \leq u \\ \arg \min_{\lambda_{l}=1, u} a^{2} \lambda_{l}^{2} - 2d_{l} \lambda_{l} & \text{otherwise} \end{cases}$

3. Simulation Study

for assessing how well true matrices are recovered by the proposed algorithm

3.1. Reverse Component Analysis3.2. Results

3.1 Reverse Component Analysis

[1] Randomly synthesize true ${}_{50}H_{10}$ with $CN(H) \le 5$ [2] Perform PCA for ${}_{50}H_{10}$ to obtain its lower rank approximation ${}_{50}\mathbf{F}_{a}\mathbf{A}_{10}'$ with $_{50}\mathbf{H}_{10} \cong {}_{50}\mathbf{F}_{a}\mathbf{A}_{10}' \quad (q = 6, \dots, 10)$ [3] Apply the algorithm for ${}_{50}\mathbf{F}_{q}\mathbf{A}_{10}'$ for minimizing $f(\mathbf{H}) = \|_{50} \mathbf{F}_{q} \mathbf{A}_{10}' - {}_{50} \mathbf{H}_{10} \|^{2}$ over **H** s.t. $CN(\mathbf{H}) \leq 5$

This is an attempt to obtain full rank **H** from lower rank **FA**', and thus **Reverse** to **Principal Component Analysis**.

3.2 Results

I assessed the recovery of \mathbf{H}_{true} by \mathbf{H} obtained from *q*-rank approximation ${}_{50}\mathbf{F}_{q}\mathbf{A}_{10}'$ of \mathbf{H}_{true} , using the index

 $1-0.5 ||\mathbf{H}-\mathbf{H}_{true}||^2/(||\mathbf{H}-\mathbf{H}_{ave}||^2 + ||\mathbf{H}_{true}-\mathbf{H}_{ave}||^2)$

with \mathbf{H}_{ave} containing the average of all elements in $\mathbf{H} + \mathbf{H}_{true}$

q	6	7	8	9	10
average	0.944	0.972	0.986	0.995	1.000

The recovery was fairly good, in that the index values average over 500 [\mathbf{H} , \mathbf{H}_{true}] were close to 1 (**upper bound**) as shown above.

4. Application

The proposed algorithm is useful for **avoiding** the **degeneration** of solutions in some methods. I illustrate it with the application to **generalized oblique Procrustes rotation**.

4.1 Generalized Oblique Procrustes Rotaton

4.2 Constrained-CN Version

4.1. Generalized Oblique Procrustes Rotation

To match $A_k T_k^{-1}$ (rotated loading matrices) to **H** (a matrix common across *k*)

Min $GOPR(\mathbf{T}_k, \mathbf{H}) = \sum_k ||\mathbf{A}_k \mathbf{T}_k^{-1} - \mathbf{H}||^2$ over \mathbf{T}_k and \mathbf{H} s.t. $Diag(\mathbf{T}_k' \mathbf{T}_k) = \mathbf{I}_p$

However, solutions are known to degenerate with $rank(\mathbf{A}_{k}\mathbf{T}_{k}^{-1}) = rank(\mathbf{H}) = 1.$

For avoiding the degeneration, we can incorporate constraint $CN(\mathbf{H}) \leq u$ using the propose algorithm.

4.2. Constrained-CN Version

$$GOPR(\mathbf{T}_{k}, \mathbf{H}) = \Sigma_{k} ||\mathbf{A}_{k}\mathbf{T}_{k}^{-1} - \mathbf{H}||^{2}$$
$$= g(\mathbf{T}_{k}) + K||\mathbf{A}\mathbf{T} - \mathbf{H}||^{2}$$

with
$$\mathbf{A} = [\mathbf{A}_1, \dots, \mathbf{A}_K], \mathbf{T} = [\mathbf{T}_1'^{-1}, \dots, \mathbf{T}_K'^{-1}]'$$

Alternating iteration:

min $GOPR(\mathbf{T}_k | \mathbf{H})$ over \mathbf{T}_k s.t. $Diag(\mathbf{T}_k'\mathbf{T}_k) = \mathbf{I}_p$ \leftarrow Existing method

 $\min ||\mathbf{AT} - \mathbf{H}||^2 \text{ over } \mathbf{H} \text{ s.t. } CN(\mathbf{H}) \le u$ $\leftarrow \text{ Proposed algorithm}$

5. Conclusion

5.1 Problem & Algorithm

5.2 Applications

5.1 Problem & Algorithm

For solving the constrained-CN LS problem

min $f(\mathbf{H}) = ||\mathbf{Y} - \mathbf{H}||^2$ over \mathbf{H} s.t. $CN(\mathbf{H}) \le u$

I proposed an algorithm in which \mathbf{H} is reparameterized as $a\mathbf{K}\Lambda\mathbf{L}'$ to reformulate the problem into

Min $f(a, \mathbf{K}, \Lambda, \mathbf{L}') = ||\mathbf{Y} - a\mathbf{K}\Lambda\mathbf{L}'||^2$ over $a, \mathbf{K}, \Lambda, \mathbf{L}'$ s.t. $1 \le \lambda_l \le u$

In the algorithm, **regression**, the solving of **quadratic equations**, and **orthogonal Procrustes rotation**, are alternately iterated.

5.2 Applications

The algorithm was evaluated by simulated **Reverse Component Analysis**

min $f(\mathbf{H}) = ||\mathbf{H}_{reduced} - \mathbf{H}||^2$ over \mathbf{H} s.t. $CN(\mathbf{H}) \le u$ with $\mathbf{H}_{reduced}$ the reduced rank version of \mathbf{H}_{true} , showing the good recovery of \mathbf{H}_{true} by \mathbf{H} .

The constrained condition number algorithm allows Generalized oblique Procrustes rotation to avoid degenerate solutions.

For an identical purpose, the algorithm could be applied to other analysis procedures.