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■ In model based clustering the data are assumed to come from a
finite mixture model (McLachlan and Peel, 2000) with each
component corresponding to a cluster.
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■ In model based clustering the data are assumed to come from a
finite mixture model (McLachlan and Peel, 2000) with each
component corresponding to a cluster.

■ For quantitative data each mixture component is usually modeled
as a multivariate Gaussian distribution (Fraley and Raftery,
2002):
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■ In model based clustering the data are assumed to come from a
finite mixture model (McLachlan and Peel, 2000) with each
component corresponding to a cluster.

■ For quantitative data each mixture component is usually modeled
as a multivariate Gaussian distribution (Fraley and Raftery,
2002):

f(y; θ) =

k∑

i=1

wiφ
(p)(y;µi,Σi)

■ However when the number of observed variables is large, it is
well known that Gaussian mixture models represent an
over-parameterized solution.
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Model based clustering Dimensionally reduced model based
clustering
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Some solutions (among the others):

Model based clustering Dimensionally reduced model based
clustering

■ Banfield and Raftery (1993):
proposed a parameterization
of the generic component-
covariance matrix based on its
spectral decomposition:
Σi = λiA

⊤

i DiAi

■ Bouveyron et al. (2007):
proposed a different parameteri-
zation of the generic component-
covariance matrix

■ Ghahrami and Hilton (1997) and
McLachlan et al. (2003):
Mixtures of Factor Analyzers (MFA)

■ Yoshida et al. (2004), Baek and
McLachlan (2008), Montanari and
Viroli (2010) :
Factor Mixture Analysis (FMA)
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Gaussian factors
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■ Dimensionality reduction is performed through k factor models with
Gaussian factors

■ The distribution of each observation is modelled, with probability πj

(j = 1, . . . , k), according to an ordinary factor analysis model
y = ηj +Λjz+ ej , with ej ∼ φ(p)(0,Ψj), where Ψj is a diagonal matrix and

zj ∼ φ(q)(0, Iq)
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■ Dimensionality reduction is performed through k factor models with
Gaussian factors

■ The distribution of each observation is modelled, with probability πj

(j = 1, . . . , k), according to an ordinary factor analysis model
y = ηj +Λjz+ ej , with ej ∼ φ(p)(0,Ψj), where Ψj is a diagonal matrix and

zj ∼ φ(q)(0, Iq)

■ In the observed space we obtain a finite mixture of multivariate Gaussians with
heteroscedastic components:

f(y) =
k∑

j=1

πjφ
(p)(ηj ,ΛjΛ

⊤

j +Ψj)
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with factors modelled by a multivariate Gaussian mixture
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■ Dimensionality reduction is performed through a single factor model
with factors modelled by a multivariate Gaussian mixture

■ The observed centred data are described as y = Λz+ e with e ∼ φ(p)(0,Ψ)
where Ψ is diagonal.
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■ The observed centred data are described as y = Λz+ e with e ∼ φ(p)(0,Ψ)
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■ Dimensionality reduction is performed through a single factor model
with factors modelled by a multivariate Gaussian mixture

■ The observed centred data are described as y = Λz+ e with e ∼ φ(p)(0,Ψ)
where Ψ is diagonal.

■ The q factors are assumed to be standardized and are modelled as a finite
mixture of multivariate Gaussians

f(z) =

k∑

i=1

γiφ
(q)
i (µi,Σi).

■ In the observed space we obtain a finite mixture of multivariate Gaussians with
heteroscedastic components:

f(y) =

k∑

i=1

γiφ
(p)
i (Λµi,ΛΣiΛ

⊤ +Ψ).
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Gaussian factors (distributed as
a multivariate mixture of Gaus-
sians);
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sponds to the number of factor
models; ⇒ ’local’ dimension re-
duction within each group

■ The number of clusters is defined
by the number of components of
the Gaussian mixture; ⇒ ’global’
dimension reduction and cluster-
ing is performed in the latent
space.
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MFA FMA

■ k factor models with q Gaussian
factors;

■ one factor model with q non
Gaussian factors (distributed as
a multivariate mixture of Gaus-
sians);

■ The number of clusters corre-
sponds to the number of factor
models; ⇒ ’local’ dimension re-
duction within each group

■ The number of clusters is defined
by the number of components of
the Gaussian mixture; ⇒ ’global’
dimension reduction and cluster-
ing is performed in the latent
space.

■ A flexible solution with less pa-
rameters than model based clus-
tering;

■ A flexible solution with less pa-
rameters than model based clus-
tering;
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We assume the data can be described by k1 factor models with
probability πj (j = 1, . . . , k1):

y = ηj +Λjz+ ej . (1)
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We assume the data can be described by k1 factor models with
probability πj (j = 1, . . . , k1):

y = ηj +Λjz+ ej . (1)

Within all the factor models, the factors are assumed to be
distributed according to a finite mixture of k2 Gaussians:

f(z) =

k2∑

i=1

γiφ
(q)(µi,Σi), (2)

with mixture parameters supposed to be equal across the factor
models j = 1, . . . , k1.
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From the previous assumptions it follows that the distribution of
the observed variables becomes a ’double’ mixture of Gaussians:

f(y; θ) =

k1∑

j=1

πj

k2∑

i=1

γiφ
(p)(ηj +Λjµi,ΛjΣiΛ

⊤

j +Ψj). (3)

which leads to a ’double’ interpretation:

(1) a mixture of k1 factor analyzers with non-Gaussian factors,
jointly modelled by a mixture of k2 Gaussians, or
(2) a non-linear factor mixture analysis model.
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From the previous assumptions it follows that the distribution of
the observed variables becomes a ’double’ mixture of Gaussians:

f(y; θ) =

k1∑

j=1

πj

k2∑

i=1

γiφ
(p)(ηj +Λjµi,ΛjΣiΛ

⊤

j +Ψj). (3)

which leads to a ’double’ interpretation:

(1) a mixture of k1 factor analyzers with non-Gaussian factors,
jointly modelled by a mixture of k2 Gaussians, or
(2) a non-linear factor mixture analysis model.

Moreover it coincides with MFA when k2 = 1 and with FMA when
k1 = 1. Thus the method includes MFA and FMA as special cases.
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■ The double mixture model implies that observations can be
classified according to a two-level process:
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■ The double mixture model implies that observations can be
classified according to a two-level process:

(1) units may be described by one out of the k1 different
factor models;
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■ The double mixture model implies that observations can be
classified according to a two-level process:

(1) units may be described by one out of the k1 different
factor models;
(2) then units (within each factor model) may belong to
different k2 sub-populations (defined by the k2 components
of the multivariate factor distribution.)
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■ The double mixture model implies that observations can be
classified according to a two-level process:

(1) units may be described by one out of the k1 different
factor models;
(2) then units (within each factor model) may belong to
different k2 sub-populations (defined by the k2 components
of the multivariate factor distribution.)

■ The question is: k1, k2 or k1 × k2 groups?
i.e. k1 or k2 non-Gaussian sub-populations or k1 × k2
Gaussian ones?
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The data set contains 569 clinical cases of benignant (62.7%) and malignant (37.3%)
diagnoses of breast cancer. Cluster analysis is based on p = 3 attributes: extreme
area, extreme smoothness, and mean texture.
(ARI by Mclust, k=4 groups: 0.55)

MFA FMA MFMA
k1 2 1 2
k2 1 3 3
q 1 1 1
h 16 12 22

logL -2174 -2167 -2139
BIC 4449 4410 4418
AIC 4379 4385 4323
ARI(k1) 0.73 0.00 0.80
ARI(k2) 0.00 0.64 0.05
ARI(k1k2) 0.73 0.64 0.52
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The data set contains 569 clinical cases of benignant (62.7%) and malignant (37.3%)
diagnoses of breast cancer. Cluster analysis is based on p = 3 attributes: extreme
area, extreme smoothness, and mean texture.
(ARI by Mclust, k=4 groups: 0.55)

MFA FMA MFMA
k1 2 1 2
k2 1 3 3
q 1 1 1
h 16 12 22

logL -2174 -2167 -2139
BIC 4449 4410 4418
AIC 4379 4385 4323
ARI(k1) 0.73 0.00 0.80
ARI(k2) 0.00 0.64 0.05
ARI(k1k2) 0.73 0.64 0.52

MFMA: 2, 3 or 6 groups?
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Some indicators to measure the separation of the estimated clusters have been
computed:

k avg. dist. between avg. dist. within avg. silhouette width
MFMA(k1) 2 2.71 1.77 0.32
MFMA(k2) 3 2.67 1.88 0.15
MFMA(k1k2) 6 2.57 1.47 0.19
MFA 2 2.68 1.73 0.32
FMA 3 2.72 1.76 0.26
MCLUST 4 2.60 1.41 0.27
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Some indicators to measure the separation of the estimated clusters have been
computed:

k avg. dist. between avg. dist. within avg. silhouette width
MFMA(k1) 2 2.71 1.77 0.32
MFMA(k2) 3 2.67 1.88 0.15
MFMA(k1k2) 6 2.57 1.47 0.19
MFA 2 2.68 1.73 0.32
FMA 3 2.72 1.76 0.26
MCLUST 4 2.60 1.41 0.27

k1 = 2 factor models with k2 = 3 components for modeling the factor

... a mixture of factor analyzers with non-Gaussian components
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■ MFMA is a double mixture model which extends and combines MFA and FMA

■ A MFMA model with k1 and k2 components may be interpreted in three
different ways:

◆ as a double mixture which performs clustering into k = k1 × k2 groups,

◆ as a mixture of factor mixture analysis models which performs clustering
into k = k2 groups

◆ or as a mixture of factor analyzers with non-Gaussian components which
classifies units into k = k1 groups.
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modelling non-Gaussian latent variables.
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■ MFMA is a double mixture model which extends and combines MFA and FMA

■ A MFMA model with k1 and k2 components may be interpreted in three
different ways:

◆ as a double mixture which performs clustering into k = k1 × k2 groups,

◆ as a mixture of factor mixture analysis models which performs clustering
into k = k2 groups

◆ or as a mixture of factor analyzers with non-Gaussian components which
classifies units into k = k1 groups.

■ In the last two perspectives the proposed model represents a powerful tool for
modelling non-Gaussian latent variables.

■ Some references:

◆ A. Montanari and C. Viroli (2010), Heteroscedastic Factor Mixture Analysis,
Statistical Modelling, forthcoming

◆ C. Viroli (2011), Dimensionally reduced model-based clustering through

Mixtures of Factor Mixture Analyzers, Journal of Classification, forthcoming
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