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Introduction to Indirect ABC

Introduction

⊲ Bayesian statistics regards parameters of a given model as both unknown and stochastic

⊲ Bayesian inference makes use of prior information on the model parameter which is

then updated by observing a specific data sample via the Bayes Theorem

p(θ|y) =
p(y|θ)π(θ)

R

Θ
p(y|θ)π(θ)

⊲ p(θ|y) is called the posterior density of the parameter θ and Bayesian inference on θ

is based on p(θ|y)

⊲ In what follows we deal with posterior sampling in the case where the likelihood function

of the model is of unknown form
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ABC Algorithms

Approximate Bayesian Computation

⊲ We seek draws from the posterior distribution p(θ|y) ∝ p(y|θ)π(θ) where the

likelihood cannot be computed exactly

1: Generate θ∗ from prior π(θ)

2: Simulate ŷ from likelihood p(y|θ∗)

3: Accept θ∗ if ŷ = ỹ

4: return to 1:

⊲ Results in iid draws from p(θ|ỹ)

⊲ Success of ABC algorithms depends on the fact that it is easy to simulate from p(y|θ)

⊲ Problems arise in the following cases ( step 3)

– y is high–dimensional

– y lives on a continuous state–space

in that the acceptance rate is prohibitively small (or even exactly 0)

⊲ Rely on approximations to the true posterior density
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ABC Algorithms

Approximate Bayesian Computation

⊲ Approximate methods can be implemented as

1: Generate θ∗ from prior π(θ)

2: Simulate ŷ from likelihood p(y|θ∗)

3: Accept θ∗ if d(S(ŷ), S(ỹ)) ≤ ǫ

4: return to 1:

⊲ Results in iid draws from p(θ|d(S(ŷ), S(ỹ)) ≤ ǫ)

⊲ Need to specify a metric d, a tolerance level ǫ as well as summary statistics S

– If ǫ = ∞, then θ∗ ∼ π(θ)

– If ǫ = 0, then θ∗ ∼ p(θ|S(ỹ))

⊲ The introduction of a tolerance level ǫ allows for a discrete approximation of an

originally continuous posterior density

⊲ The problem of high–dimensional data is dealt with (sufficient) summary statistics
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ABC Algorithms

Why sufficient summary statistics?

⊲ A sufficient statistic S(y) contains as much information as the entire data sample y

( model dependent)

⊲ For sufficient summary statistics and ǫ small

p(θ|d(S(ŷ), S(ỹ)) ≤ ǫ)
a
∼ p(θ|ỹ)

⊲ Neyman factorization lemma

p(y|θ) = g(S(y)|θ) h(y)

⊲ Verifying sufficiency for a model described by p(y|θ) is impossible when the likelihood

function is unknown
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Indirect Moment Conditions

Indirect approach

⊲ General idea

– We cannot prove sufficiency within the structural model of interest, p(y|θ)

– Find an analytically tractable auxiliary model, f(y|ρ) that explains the data well

– Establish sufficient summary statistics within the auxiliary model (i.e. sufficient for

ρ)

– Find conditions under which sufficiency for ρ carries over to sufficiency for θ

⊲ This approach is in tradition with the Indirect Inference literature (see Gourieroux et al.

(1993), Gallant and McCulloch (2009), Gallant and Tauchen (1996, 2001, 2007))
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Indirect Moment Conditions

Structural model

⊲ Our observed data {ỹt, x̃t−1}
n
t=1 is considered to be a sample from the structural

model

p(x0|θ
◦
)

n
Y

t=1

p(yt|xt−1; θ
◦
)

with θ◦ denoting the true structural parameter value

⊲ We are naturally not restricted to the time invariant (i.e. stationary) case

⊲ Only requirement

We have to be able to easily simulate from p(·|θ)
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Indirect Moment Conditions

Auxiliary model

⊲ Assume we have an analytically tractable auxiliary model which approximates the true

data generating process to any desired degree

{f(x0|ρ), f(yt|xt−1; ρ)}
n
t=1

⊲ We denote with

ρ̃n = arg max
ρ

1

n

n
X

t=1

log f(ỹt|x̃t−1; ρ)

its Maximum Likelihood Estimate and with

Ĩn =
1

n

n
X

t=1

»

∂

∂ρ
log f(ỹt|x̃t−1; ρ̃n)

– »

∂

∂ρ
log f(ỹt|x̃t−1; ρ̃n)

–T

its corresponding estimate of the Information Matrix
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Indirect Moment Conditions

Indirect moment conditions

⊲ We take the auxiliary score as a sufficient statistic for the auxiliary parameter ρ

S(y, x|θ, ρ) =
n

X

t=1

∂

∂ρ
log f(yt(θ)|xt−1; ρ)

⊲ We compute the score by using a simulated sample {ŷt, x̂t−1}
n
t=1, replacing ρ by its

MLE ρ̃n, i.e.

Ŝ(ŷ, x̂|θ, ρ̃n) =
n

X

t=1

∂

∂ρ
log f(ŷt(θ)|x̂t−1; ρ̃n)

⊲ We use Ŝ(ŷ, x̂|θ, ρ̃n) as summary statistic and weight the moments by (Ĩn)
−1, i.e.

Ŝ(ŷ, x̂|θ, ρ̃n)
T(Ĩn)

−1
Ŝ(ŷ, x̂|θ, ρ̃n)
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Indirect Moment Conditions

ABC with Indirect Moments

⊲ Let us now consider how to implement indirect moment conditions within ABC

1. Compute the ML estimate of the auxiliary model parameter ρ̃n, based on

observations {ỹt}
n
t=1

2. Generate θ∗ from prior π(θ)

3. Simulate {ŷt, x̂t−1}
n
t=1 from likelihood p(y|θ∗)

4. Accept θ∗ if d(S(ŷ), S(ỹ)) ≤ ǫ

(a) Replace S(ŷ) by Ŝ(ŷ, x̂|θ∗, ρ̃n) =
Pn

t=1
∂
∂ρ

log f(ŷt(θ
∗)|x̂t−1; ρ̃n)

(b) Note that S(ỹ) = S(ỹ, x̃|θ, ρ̃n) =
Pn

t=1
∂
∂ρ

log f(ỹt|x̃t−1; ρ̃n) = 0 by

construction for all candidate θ

(c) Calculate the distance d by the chi-squared criterion

Ŝ(ŷ, x̂|θ∗, ρ̃n)
T(Ĩn)

−1Ŝ(ŷ, x̂|θ∗, ρ̃n) where moments are weighted according

to (Ĩn)
−1

5. Return to 2.
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Sufficiency Results

Sufficiency within the auxiliary model

⊲ We use summary statistics that are based on the score of the auxiliary model, i.e.

sρ =
∂

∂ρ
log f(yt|xt−1; ρ)

⊲ Barndorff–Nielsen, Cox (1978) showed that the normed likelihood function f̄(·) =

f(·) − f(ρ̃) is indeed a minimal sufficient statistic

⊲ More general, minimal sufficiency holds true for any statistic T (y) that generates

the same partition of the sample space as the mapping r: y 7→ f(y|·) (see

Barndorff–Nielsen, Jørgensen (1976))

⊲ For these reasons we can regard the auxiliary score sρ to be minimal sufficient for the

auxiliary parameter ρ
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Sufficiency Results

Sufficiency within the structural model

⊲ Assumption

There exists a map g: θ 7→ ρ such that

p(yt|xt−1; θ) = f(yt|xt−1; g(θ))

for all θ ∈ Θ for which our prior beliefs have positive probability mass, i.e. π(θ) > 0

⊲ General idea

Given a model f(y|ρ) for which a sufficient statistic S(y) exists and a nested sub

model p(y|θ) (i.e. the map g holds exactly) then S(y) is also sufficient for p(y|θ)

⊲ Assumption can be seen in light of the indirect inference literature:

– Compared to GSM (Gallant, McCulloch (2009)) there is no need to compute the

map explicitly

– Compared to EMM (Gallant, Tauchen (1996)) the smooth embeddedness assumption

is strengthened to hold not only in an open neighborhood of the true parameter

value θ◦
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Simulation Study

Toy example

⊲ Structural model

We consider Xi ∼ exp(λ), i.e.

pX(X|λ) = λ exp(−λX) IX≥0

⊲ Auxiliary model

We consider Xi ∼ Γ(α(x), β(x)), i.e.

fX(X|α(x)
, β

(x)) =
(β(x))α(x)

Γ(α(x))
X

α(x)−1 exp(−β
(x)

X) IX>0

The map is thus g: λ 7→ (1, λ)

12



Simulation Study

Toy example

⊲ Exact inference

– conjugate prior: λ ∼ Γ(α(λ), β(λ))

– likelihood: L = λn exp(−λ
P

Xi)

– posterior: λ|X ∼ Γ(α(λ) + n, β(λ) +
P

Xi)

⊲ For each value of ǫ = (1, 0.1, 0.01) we run IABC until we obtain 100.000 draws

from p(λ|d(S(X̂), S(X̃)) ≤ ǫ)

⊲ We have a total of n = 60 observations X̃i, iid exponentially distributed with λ = 1

⊲ We chose the prior on λ to be π(λ) = Γ(1, 1)
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Simulation Study

Figure 1: Histogram for posterior draws of λ for different values of ǫ
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Conclusion

Conclusion

⊲ Indirect moment conditions indeed provide a systematic method of choosing sufficient

summary statistics

⊲ An efficient way of weighting the different moments is presented

⊲ A meaningful interpretation to the tolerance level ǫ is made available by normalizing

the moments and using a chi–squared distance function

( sensible assessment of how good the approximation to the true posterior is)

⊲ As the results of our simulation example have shown, Indirect ABC is computationally

efficient among available alternatives (e.g. GSM – Bayesian Indirect Inference)
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