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Introduction to Indirect ABC

Introduction

> Bayesian statistics regards parameters of a given model as both unknown and stochastic

> Bayesian inference makes use of prior information on the model parameter which is
then updated by observing a specific data sample via the Bayes Theorem

(0 (6)
POW) = T 0w (o)

> p(0|y) is called the posterior density of the parameter 6 and Bayesian inference on 6
is based on p(0|y)

> In what follows we deal with posterior sampling in the case where the likelihood function
of the model is of unknown form




ABC Algorithms

Approximate Bayesian Computation

> We seek draws from the posterior distribution p(0|y) o« p(y|0)mw(6) where the
likelihood cannot be computed exactly

1: Generate 6™ from prior 7(60)

2. Simulate g from likelihood p(y|6™)
3. Accept 0" if g = g

4: return to 1:

> Results in 7id draws from p(0|7)

> Success of ABC algorithms depends on the fact that it is easy to simulate from p(y|0)

> Problems arise in the following cases (~~ step 3)
— vy is high—dimensional
— y lives on a continuous state—space
in that the acceptance rate is prohibitively small (or even exactly 0)

> Rely on approximations to the true posterior density




ABC Algorithms

Approximate Bayesian Computation

> Approximate methods can be implemented as

1: Generate 6™ from prior 7(60)

2: Simulate ¢ from likelihood p(y|6™)
3. Accept 0" if d(S(7), S(g)) <€
4: return to 1:

> Results in i¢d draws from p(0|d(S(g), S(y)) < €)

> Need to specify a metric d, a tolerance level € as well as summary statistics S
— If € = oo, then * ~ 7(60)
— If e =0, then 8" ~ p(0|S(7y))

> The introduction of a tolerance level € allows for a discrete approximation of an
originally continuous posterior density

> The problem of high—dimensional data is dealt with (sufficient) summary statistics




ABC Algorithms

Why sufficient summary statistics?

> A sufficient statistic S(y) contains as much information as the entire data sample y
(~» model dependent)

> For sufficient summary statistics and e small

p(0|d(S(9), S(7)) < €) ~ p(0]7)

> Neyman factorization lemma

p(yl0) = g(S(y)|0) h(y)

> Verifying sufficiency for a model described by p(y|6) is impossible when the likelihood
function is unknown




Indirect Moment Conditions

Indirect approach

> General idea

— We cannot prove sufficiency within the structural model of interest, p(y|6)

— Find an analytically tractable auxiliary model, f(y|p) that explains the data well

— Establish sufficient summary statistics within the auxiliary model (i.e. sufficient for
P)

— Find conditions under which sufficiency for p carries over to sufficiency for 6

> This approach is in tradition with the Indirect Inference literature (see Gourieroux et al.
(1993), Gallant and McCulloch (2009), Gallant and Tauchen (1996, 2001, 2007))




Indirect Moment Conditions

Structural model

> Our observed data {g;, Z+—1},_, is considered to be a sample from the structural
model

n
O O
p(0|6°) | [ p(yelwi1;6°)
t=1
with 6° denoting the true structural parameter value
> We are naturally not restricted to the time invariant (i.e. stationary) case

> Only requirement

We have to be able to easily simulate from p(-|0)




Indirect Moment Conditions

Auxiliary model

> Assume we have an analytically tractable auxiliary model which approximates the true
data generating process to any desired degree

{f(@alp), f(yelwei1; p) Y1y

> We denote with

1 o
pn = argmax— » log f(§:|#i—1;p)
Y mn —1

its Maximum Likelihood Estimate and with
T

~ 1 <& O o
In = —2 |5, 108 0 @lZe1; pn) | | 5= 108 f(H:|Ti1s P
n; [ap og f(Yi|Ti—1; p )] [8/0 og f(Gt|Zi—15 pn)

its corresponding estimate of the Information Matrix




Indirect Moment Conditions

Indirect moment conditions

> We take the auxiliary score as a sufficient statistic for the auxiliary parameter p

.9
S(y, |0, p) = Zé)—plog f(ye(0)|xi—1; p)

t=1

> We compute the score by using a simulated sample {;, Z:—1};._,, replacing p by its
MLE p,,, i.e.

n

. ) o
S(9, 20, pn) = > a—plog F(G(0)|&1—1; pn)

t=1

> We use S(§, |6, pn) as summary statistic and weight the moments by (Z,,) "}, i.e.

S(9, 210, pn) (Zo)"'S(9, 2|0, pn)




Indirect Moment Conditions

ABC with Indirect Moments

> Let us now consider how to implement indirect moment conditions within ABC

1. Compute the ML estimate of the auxiliary model parameter p,,, based on
observations {@:};_,

2. Generate 8" from prior 7(6)
3. Simulate {9, #¢—1};_, from likelihood p(y|6™)
4. Accept 0" if d(S(g), S(g)) <€
(a) Replace S(9) by 5(9, 216", pn) = X1y 2 1og f(§:(0%)|2¢1; fn)
(b) Note that S(§) = S(g,2[0,pn) = 22/, a%log f(Ge|Zi-15pn) = O by
construction for all candidate 6

(c) Calculate the distance d by the chi-squared criterion
S(y, 0%, pn) (L) 'S (9, &|0*, pn) where moments are weighted according
to (Z,) "

5. Return to 2.




Sufficiency Results

Sufficiency within the auxiliary model

> We use summary statistics that are based on the score of the auxiliary model, i.e.

0
Sp = 8_p log f(yt|ze-1; p)

> Barndorff—Nielsen, Cox (1978) showed that the normed likelihood function f() —
f(-) — f(p) is indeed a minimal sufficient statistic

> More general, minimal sufficiency holds true for any statistic T'(y) that generates

the same partition of the sample space as the mapping »: y — f(y|-) (see
Barndorff—Nielsen, Jgrgensen (1976))

> For these reasons we can regard the auxiliary score s, to be minimal sufficient for the
auxiliary parameter p
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Sufficiency Results

Sufficiency within the structural model

> Assumption
There exists a map g: 8 +— p such that

P(Yi|xi—150) = f(yt|33t—1; g(0))

for all & € © for which our prior beliefs have positive probability mass, i.e. w(0) > 0
> General idea

Given a model f(y|p) for which a sufficient statistic S(y) exists and a nested sub
model p(y|0) (i.e. the map g holds exactly) then S(y) is also sufficient for p(y|6)

> Assumption can be seen in light of the indirect inference literature:

— Compared to GSM (Gallant, McCulloch (2009)) there is no need to compute the
map explicitly
— Compared to EMM (Gallant, Tauchen (1996)) the smooth embeddedness assumption

is strengthened to hold not only in an open neighborhood of the true parameter
value 6°
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Simulation Study

Toy example

> Structural model

We consider X; ~ exp(), i.e.

px(X|A) = Aexp(—AX) Ix>¢

> Auxiliary model

We consider X; ~ I'(a'®, 3@, ie.

(z)y () N
(8) sal®

—1 (=)
F(oz(x)) exp( 16 X) Ix>o

fX(X|oz(x), 5(@) _

The map is thus g: A — (1, \)
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Simulation Study

Toy example

> Exact inference
— conjugate prior: A ~ I'(a™, gN)
— likelihood: £ = A" exp(—A > X))
— posterior: A\|X ~ T'(a™ +n, Y + 3 X;)

> For each value of ¢ = gl, 0.1,0.01) we run IABC until we obtain 100.000 draws
from p(A|d(S(X), S(X)) <€)

> We have a total of n = 60 observations X’i, iid exponentially distributed with A =1

> We chose the prior on A to be w(A) =T'(1,1)

13



Simulation Study
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Figure 1: Histogram for posterior draws of A for different values of €
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Conclusion

Conclusion

> Indirect moment conditions indeed provide a systematic method of choosing sufficient
summary statistics

> An efficient way of weighting the different moments is presented

> A meaningful interpretation to the tolerance level € is made available by normalizing
the moments and using a chi—squared distance function
(~~ sensible assessment of how good the approximation to the true posterior is)

> As the results of our simulation example have shown, Indirect ABC is computationally
efficient among available alternatives (e.g. GSM — Bayesian Indirect Inference)

15



