Mixtures of Weighted Distance-Based Models for Ranking Data

Paul H. Lee* Philip L. H. Yu The University of Hong Kong

Outline of presentation

Introduction

Distance-Based Models for Ranking Data

Mixtures of Weighted Distance-based Models

Conclusions and Further Research

Introduction

- Distance-Based Models for Ranking Data
- Weighted Distance-based Models (with application)
- Simulation Studies
- Conclusions and Further Research
- Question & Answer

Distance-Based Models for Ranking Data

Mixtures of Weighted Distance-based Models

Conclusions and Further Research

Introduction

Introduction

Distance-Based Models for Ranking Data

Mixtures of Weighted Distance-based Models

Conclusions and Further Research

What is ranking data?

- Rank a set of items
- Types of soft drinks
 Coke, 7-up, fanta
- Political goals
- Election candidates
 World footballer of the year

Introduction

Distance-Based Models for Ranking Data

Mixtures of Weighted Distance-based Models

Conclusions and Further Research

Notations used in ranking literature

π : ranking π(i) is the rank assigned to item i π = (2,4,1,3) Item 1 rank 2nd, item 2 rank 4th
π⁻¹ : ordering π⁻¹(i) is the item having rank i π⁻¹ = (2,4,1,3) Item 2 rank 1st, item 4 rank 2nd

Examples of Ranking Data

Introduction

Distance-Based Models for Ranking Data

Mixtures of Weighted Distance-based Models

Conclusions and Further Research

Marketing research:

- ♦ Green and Rao (1972): to rank 15 breakfast snack food items including toast, donut, etc.
- Travel behavior and mode of transportation:
 - ◆ Beggs, et al. (1981), Hausman, et al. (1987): to rank order 16 car designs which differed over 9 attibutes.

Examples of Ranking Data

Introduction

Distance-Based Models for Ranking Data

Mixtures of Weighted Distance-based Models

Conclusions and Further Research

Politic:

 Croon (1989): to rank 4 political goals: Order, Say, Price, and Freedom.

Horse racing:

 Lo et al. (1994): to predict the top two winning horses.

Types of Ranking Data

Introduction

Distance-Based Models for Ranking Data

Mixtures of Weighted Distance-based Models

Conclusions and Further Research Given a set of J items. There are two types of ranking data:

- Complete rankings (rank all *J* items)
- Incomplete (or Partial) rankings
 - Top q rankings (select the top q items and rank them) When q = 1, top q ranking = discrete choice
 - Subset rankings (select a subset of m items and rank them)
 - When m = 2, subset ranking = paired comparison
 - When m = 3, subset ranking = triple ranking

Problems of Interest

Introduction

Distance-Based Models for Ranking Data

Mixtures of Weighted Distance-based Models

Conclusions and Further Research

Graphical representation of ranking data

- visualize rankings given by judges preferably in a low-dimensional space
 - existing work: Dual scaling (Nishisato, 1994), vector models (Tucker, 1960; Carroll, 1980; Yu and Chan, 2001), ideal point models (Coombs, 1950; De Soete, et al., 1986; Yu, Chung and Leung, 2008), polyhedron representation (Thompson, 2003)

Problems of Interest

Introduction

Distance-Based Models for Ranking Data

Mixtures of Weighted Distance-based Models

Conclusions and Further Research

Factor analysis

- ◆ identify latent factors that affect ranking decision.
- existing work: Yu, Lam and Lo (2005)
- Cluster analysis / Latent class analysis
 - find group of judges with similar rank-order preference within clusters.
 - recent work: Murphy and Martin (2003), Lee and Yu (2010)

Problems of Interest

Introduction

Distance-Based Models for Ranking Data

Mixtures of Weighted Distance-based Models

Conclusions and Further Research

Modelling

- determine probabilistic structure of probability of observing a ranking
 - existing work: a lot, see Marden (1995) for a review, Yu (2000)
- Different types of statistical models for ranking data
 - Order-statistics
 - Paired comparison
 - Distance-based
 - Multistage
- This talk: a weighted distance-based model?
- mixtures models?

Introduction

Distance-Based Models for Ranking Data

Mixtures of Weighted Distance-based Models

Conclusions and Further Research

Properties of distance measure

 $\blacklozenge \ d(\boldsymbol{\pi}_i, \boldsymbol{\pi}_i) = 0$

$$\blacklozenge \ d(\boldsymbol{\pi}_i, \boldsymbol{\pi}_j) = d(\boldsymbol{\pi}_j, \boldsymbol{\pi}_i)$$

• $d(\boldsymbol{\pi}_i, \boldsymbol{\pi}_j) > 0$ if $\boldsymbol{\pi}_i \neq \boldsymbol{\pi}_j$

Property of metric Triangular inequality $d(\boldsymbol{\pi}_i, \boldsymbol{\pi}_k) \leq d(\boldsymbol{\pi}_i, \boldsymbol{\pi}_j) + d(\boldsymbol{\pi}_j, \boldsymbol{\pi}_k)$

Distance-Based Models for Ranking Data

Mixtures of Weighted Distance-based Models

Conclusions and Further Research

Distance-Based Models for Ranking Data

Distance-Based Models for Ranking Data

Mixtures of Weighted Distance-based Models

Conclusions and Further Research

Model assumption:

- Probability of observing a ranking π depends on its distance to the modal ranking π_0
- The effect of distance is controlled by the dispersion parameter λ

Model specification:

- $P(\boldsymbol{\pi}|\boldsymbol{\lambda},\boldsymbol{\pi}_0) = C(\boldsymbol{\lambda})e^{-\boldsymbol{\lambda}d(\boldsymbol{\pi},\boldsymbol{\pi}_0)}$
- $\lambda > 0$ for identification problem
- $d(\boldsymbol{\pi}, \boldsymbol{\pi}_0)$ is the distance between $\boldsymbol{\pi}$ and $\boldsymbol{\pi}_0$
- $C(\lambda)$ is the proportionality constant

Distance-Based Models for Ranking Data

Mixtures of Weighted Distance-based Models

Conclusions and Further Research

Different types of distance

- ♦ Kendall's tau
 - $T(\boldsymbol{\pi}, \boldsymbol{\pi}_{0}) = \sum_{i < j} I\{[\pi(i) \pi(j)][\pi_{0}(i) \pi_{0}(j)]\}$ Used in Mallow's ϕ -model (1957) $P(\boldsymbol{\pi}|\phi, \boldsymbol{\pi}_{0}) = C(\phi)\phi^{T(\boldsymbol{\pi}, \boldsymbol{\pi}_{0})}$
- Minimum number of pairwise adjacent transpositions needed to transform π to π₀
- Spearman's rho square $R^2(\pi, \pi_0) = \sum_i [\pi(i) - \pi_0(i)]^2$ Used in Mallow's θ -model (1957) $P(\pi|\theta, \pi_0) = C(\theta)\theta^{R^2(\pi, \pi_0)}$ A distance but not a metric

Distance-Based Models for Ranking Data

Mixtures of Weighted Distance-based Models

Conclusions and Further Research

Different types of distance

- Spearman's rho $R(\boldsymbol{\pi}, \boldsymbol{\pi}_0) = \left(\sum_i [\pi(i) - \pi_0(i)]^2\right)^{0.5}$ A metric
- Spearman's footrule $F(\boldsymbol{\pi}, \boldsymbol{\pi}_0) = \sum_i |\pi(i) - \pi_0(i)|$
- Cayley's distance
 C(π, π₀) = minimum number of transpositions
 needed to transform π to π₀

Distance-Based Models for Ranking Data

Mixtures of Weighted Distance-based Models

Conclusions and Further Research

Different types of distance

- Proportionality constant $C(\lambda)$ is difficult to compute
- Close form solution available only for: Kendall's tau Cayley's distance
- Can be solved numerically by $C(\lambda) = \frac{1}{\sum_{i=1}^{k!} e^{-\lambda d(\boldsymbol{\pi}_i, \boldsymbol{\pi}_0)}}$
- Computational time increases exponentially when number of items increase

Distance-Based Models for Ranking Data

Mixtures of Weighted Distance-based Models

Conclusions and Further Research

• ϕ -component model

- Extension of Mallow's φ-model (Fligner and Verducci, 1988)
- ♦ For ranking of k items, Kendall's tau can be decomposed
 T(π, π₀) = ∑_{i=1}^{k-1} V_i
 All V's are independent
 - $V_1 = m$ means the m + 1st best item, with reference to π_0 , is chosen in π
 - This item is dropped and will not be considered anymore
 - $V_2 = m$ means the m + 1st best item is chosen in the remaining items
 - The process is repeated until all items are ranked

Distance-Based Models for Ranking Data

Mixtures of Weighted Distance-based Models

Conclusions and Further Research

• ϕ -component model

- The V's can be weighted : $\sum_{i=1}^{k-1} \theta_i V_i$
- The resulting model is: $P(\boldsymbol{\pi}|\lambda, \boldsymbol{\pi}_0) = C(\lambda)e^{-\sum_{i=1}^{k-1}\lambda_i V_i}$ $\lambda = \{\lambda_i, i = 1, ..., k-1\}$
- Also named k-1 parameter model
- Under the re-parameterizations $\phi_i = e^{-\lambda_i}, i = 1, ...k - 1,$ the resulting model will be: $P(\pi | \phi, \pi_0) = C(\phi) \prod_{i=1}^{k-1} \phi_i^{V_i}$

Distance-Based Models for Ranking Data

Introduction

Distance-Based Models for Ranking Data

Mixtures of Weighted Distance-based Models

Conclusions and Further Research

- The model has closed form proportionality constant if the V's are independent
- Only Kendall's tau and Cayley's distance can be decomposed in such form
- The extension based on Cayley's distance is named Cyclic structure model
- The model based on decomposition of Kendall's tau is more commonly used than Cayley's distance

Distance-Based Models for Ranking Data

Mixtures of Weighted Distance-based Models

Conclusions and Further Research

- The model becomes a stage-wise process
- Properties of distance is lost d(π_i, π_j) ≠ d(π_j, π_i)
 π⁻¹_i = (1, 2, 3, 4), π⁻¹_j = (2, 3, 4, 1) V₁ = 3, V₂ = 0, V₃ = 0
 π⁻¹_i = (2, 3, 4, 1), π⁻¹_j = (1, 2, 3, 4) V₁ = 1, V₂ = 1, V₃ = 1
 In general, 3λ₁ + 0λ₂ + 0λ₃ ≠ λ₁ + λ₂ + λ₃

Find an extension which

- Retains the properties of distance
- Allows weights for different rank

Distance-Based Models for Ranking Data

Mixtures of Weighted Distance-based Models

Conclusions and Further Research

Weighted distance

■ Inspired by Shieh (1998, 2000)

Different weights for different rank, according to π_0

♦ Weighted Kendall's tau T_w(π, π₀) = ∑_{i<j} w_{π₀(i)} w_{π₀(j)} I{[π(i) - π(j)][π₀(i) - π₀(j)]}
♦ Weighted Spearman's rho square R²_w(π, π₀) = ∑_i w_{π₀(i)}[π(i) - π₀(i)]²

• Weighted Spearman's rho $R_w(\boldsymbol{\pi}, \boldsymbol{\pi}_0) = \left(\sum_i w_{\pi_0(i)} [\pi(i) - \pi_0(i)]^2\right)^{0.5}$

• Weighted Spearman's footrule $F_w(\boldsymbol{\pi}, \boldsymbol{\pi}_0) = \sum_i w_{\pi_0(i)} |\pi(i) - \pi_0(i)|$

Distance-Based Models for Ranking Data

Mixtures of Weighted Distance-based Models

Conclusions and Further Research

Properties of distance is retained $d(\boldsymbol{\pi}_i, \boldsymbol{\pi}_j) = d(\boldsymbol{\pi}_j, \boldsymbol{\pi}_i)$

Example : Spearman's rho square Let $R_a = [\pi_i(a) - \pi_j(a)]^2$

•
$$\pi_i^{-1} = (1, 2, 3, 4), \pi_j^{-1} = (2, 3, 4, 1)$$

 $R_1 = 9, R_2 = 1, R_3 = 1, R_4 = 1$
• $\pi_i^{-1} = (2, 3, 4, 1), \pi_j^{-1} = (1, 2, 3, 4)$
 $R_1 = 9, R_2 = 1, R_3 = 1, R_4 = 1$

• In general, $w_2 + w_3 + w_4 + 9w_1 = w_2 + w_3 + w_4 + 9w_1$

• Note : before swapping, w_1 : weight for item ranked first in π_j

After swapping, w_1 : weight for item ranked first in $oldsymbol{\pi}_i$

Distance-Based Models for Ranking Data

Mixtures of Weighted Distance-based Models

Conclusions and Further Research

Mixtures of Weighted Distance-based Models

Distance-Based Models for Ranking Data

Mixtures of Weighted Distance-based Models

Conclusions and Further Research

- Distance-based models assume single modal ranking π_0
- Relax this assumption using mixtures models
- Probability of observing a ranking π from a mixtures of G weighted distance-based models:

$$P(\boldsymbol{\pi}) = \sum_{g=1}^{G} p_g P(\boldsymbol{\pi} | \mathbf{w}_g, \boldsymbol{\pi}_{0g}) = \sum_{g=1}^{G} p_g \frac{e^{-d} \mathbf{w}_g(\boldsymbol{\pi}, \boldsymbol{\pi}_{0g})}{C(\mathbf{w}_g)}$$

p_g is the proportion of observations belong to group *g w_q*, *π_{0q}* are the model parameters of group *g*

Distance-Based Models for Ranking Data

Mixtures of Weighted Distance-based Models

Conclusions and Further Research

Use EM algorithm to obtain MLE

- E-step: for all observations, compute the probabilities of belonging to every sub-population
- M-step: maximize the conditional expected complete-data loglikelihood
- Use BIC $(-2\ell + v \log(n))$ to determine the number of mixtures
 - ℓ is the loglikelihood $\ell = \sum_{i=1}^{n} \log \left(\sum_{g=1}^{G} p_g \frac{e^{-d} \mathbf{w}_g(\boldsymbol{\pi}_i, \boldsymbol{\pi}_{0g})}{C(\mathbf{w}_g)} \right)$
 - $\bullet v$ is the number of parameters
 - \bullet *n* is the number of observations

Mixtures of Weighted Distance-based Models

Introduction

Distance-Based Models for Ranking Data

Mixtures of Weighted Distance-based Models

Conclusions and Further Research

EM algorithm:

- Define $z_i = (z_{1i}, ..., z_{Gi})$: $z_{gi} = 1$ if $i \in g$, otherwise $z_{gi} = 0$
- Complete loglikelihood:
 - $L_{com} = \sum_{i=1}^{n} \sum_{g=1}^{G} z_{gi} [\log(p_g) d_{\mathbf{w}_g}(\boldsymbol{\pi}_i, \boldsymbol{\pi}_{0g}) log(C(\mathbf{w}_g))]$

• E-step: compute
$$\hat{z}_{gi}$$
 by:
 $\hat{z}_{gi} = \frac{\hat{p}_g P(\hat{\boldsymbol{\pi}}_i | \hat{\boldsymbol{w}}_g, \hat{\boldsymbol{\pi}}_{0g})}{\sum_{h=1}^G \hat{p}_h P(\hat{\boldsymbol{\pi}}_i | \hat{\boldsymbol{w}}_h, \hat{\boldsymbol{\pi}}_{0h})}$

• M-step compute $\hat{\mathbf{w}}_g$ and $\hat{\pi}_{0g}$ by solving: $\frac{\sum_{i=1}^n \hat{z}_{gi} d_{\mathbf{W}_g}(\boldsymbol{\pi}_i, \boldsymbol{\pi}_{0g})}{\sum_{i=1}^n \hat{z}_{gi}} = \sum_{j=1}^{k!} P(\boldsymbol{\pi}_j | \mathbf{w}_g, \boldsymbol{\pi}_{0g}) d_{\mathbf{W}_g}(\boldsymbol{\pi}_j, \boldsymbol{\pi}_{0g})$

Introduction

Distance-Based Models for Ranking Data

Mixtures of Weighted Distance-based Models

Conclusions and Further Research

- Two simulation studies
- Aims of the two studies:
 - 1. Performance of estimation algorithm
 - 2. Effectiveness of BIC

Introduction

Distance-Based Models for Ranking Data

Mixtures of Weighted Distance-based Models

Conclusions and Further Research

Ranking of 4 items, with 2000 observations

■ Generate 50 times

■ Simulation settings:

Model		π_0	w_1 w_2 w_3 w_4		w_4			
1	1	$1 \succ 2 \succ 3 \succ 4$]	1.5	1	0.5	
2 1		$1 \succ 2 \succ 3 \succ 4$		0	.75 (0.5	0.25	
Model	p	π_0		w_1	w_2	w_{\sharp}	$_3 w_4$	
3	0.5	$1 \succ 2 \succ 3 \succ$	4	2	1.5	1	0.5	
	0.5	$4 \succ 3 \succ 2 \succ$	1	2	1.5	1	0.5	
4	0.5	$1 \succ 2 \succ 3 \succ$	4	2	1.5	1	0.5	
	0.5	$4 \succ 3 \succ 2 \succ$	1	1	0.75	0.5	5 0.25	I

Introduction

Distance-Based Models for Ranking Data

Mixtures of Weighted Distance-based Models

Conclusions and Further Research

■ Compute MLE, assume number of mixtures is given

Parameter estimates:

	Model 1	Model 2			
π_0	$1 \succ 2 \succ 3 \succ 4$	$1 \succ 2 \succ 3 \succ 4$			
w_1	2.002(0.059)	0.981(0.081)			
w_2	1.509(0.055)	0.779(0.089)			
w_3	0.995(0.032)	0.492(0.035)			
w_4	0.497(0.013)	0.250(0.030)			

Introduction Distance-Based Models for Ranking		Results:				
Data Mixtures of	-	Мос	lel 3	Model 4		
Weighted Distance-based	$oldsymbol{\pi}_0$	$1 \succ 2 \succ 3 \succ 4$	$4 \succ 3 \succ 2 \succ 1$	$1 \succ 2 \succ 3 \succ 4$	$4 \succ 3 \succ 2 \succ 1$	
Models	- p	0.500(0.007)	0.500	0.499(0.028)	0.501	
Conclusions and Further Research	w_1	1.976(0.129)	1.961(0.123)	2.088(0.232)	1.039(0.158)	
	w_2	1.535(0.121)	1.540(0.107)	1.458(0.173)	0.747(0.174)	
	w_3	0.995(0.063)	0.995(0.065)	1.036(0.182)	0.497(0.072)	
	w_4	0.500(0.035)	0.498(0.025)	0.501(0.050)	0.252(0.072)	

Estimation method is accurate

• Accuracy increases for larger w

Introduction

Distance-Based Models for Ranking Data

Mixtures of Weighted Distance-based Models

Conclusions and Further Research Use BIC to select the number of mixtures

Selection frequencies:

Model	N	1	1+N	2	2 + N	3
1	0	45	5	0	0	0
2	0	37	13	0	0	0
3	0	0	0	49	1	0
4	0	0	0	47	3	0

BIC can identify the number of mixtures most of the time

BIC sometimes suggest including an additional noise component (w=0)

Application on Real data

Introduction

Distance-Based Models for Ranking Data

Mixtures of Weighted Distance-based Models

Conclusions and Further Research Dataset description:

- Political studies from Croon (1989)
- ◆ 2262 respondents from Germany
- ◆ Rankings of 4 political goals

Distance-Based Models for Ranking Data

Mixtures of Weighted Distance-based Models

Conclusions and Further Research

Dataset description:

- Respondents ranked 4 political goals for their Government
 - (A) Maintain order in nation
 - (B) Give people more to say in Government decisions
 - (C) Fight rising prices
 - (D) Protect freedom of speech
- Respondents can be classified:
 "Materialist" : top 2 = (A) and (C)
 "Post-materialist" : top 2 = (B) and (D)
 "Mixed" : other combinations

Application on Real data

Introduction

Distance-Based Models for Ranking Data

Mixtures of Weighted Distance-based Models

Conclusions and Further Research

Best model: F_w , 3 groups of mixture

- BIC: 12670.82
- Better than Strict Utility model (12670.87) and Pendergrass-Bradley model (12673.07) in Croon (1989)

Group	Ordering	p	w_1	w_2	w_3	w_4
1	$C \succ A \succ B \succ D$	0.352	2.030	1.234	~ 0	0.191
2	$A \succ C \succ B \succ D$	0.441	1.348	0.917	0.107	0.104
3	$B \succ D \succ C \succ A$	0.208	0.314	~ 0	0.151	0.552

Application on Real data

Introduction

Distance-Based Models for Ranking Data

Mixtures of Weighted Distance-based Models

Conclusions and Further Research Groups 1 and 2: Materialists
 Items (A) and (C) are preferred
 w₁ and w₂ are large, positions of (A) and (C) are stable

Group 3: Post-materialists
 Items (B) and (D) are preferred
 all weights are small, positions of items are not stable

Distance-Based Models for Ranking Data

Mixtures of Weighted Distance-based Models

Conclusions and Further Research

Conclusions and Further Research

Conclusions and Further Research

Introduction

Distance-Based Models for Ranking Data

Mixtures of Weighted Distance-based Models

Conclusions and Further Research Conclusions

- Flexibility increased
- Assumption of homogeneous population is relaxed