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Motivation. In a traditional linear regression model E(y) = Xβ with uncorrelated
homoskedastic observations, our aim is to estimate a linear combination of regression
parameters cTβ, where c 6= 0, with OLS as precisely as possible.

Examples. The choice cT = (1, 0, . . . , 0) leads to the estimation of the first regression
coefficient. In case of the Cobb-Douglas production function

lnY =
n−1∑
i=1

βi lnFi + βn,

where Y is output and F1, . . . , Fn−1 are production factors, the choice cT = (1, . . . , 1, 0)
leads to the estimation of returns to scale.

Experimental domain. We study the case that the experimental domain is finite
and rational. Denote it X = {x1, . . . ,xk} (⊆ IRp).

Definition. A regression design matrix X is X -correct, if each row xT of X fulfills
x ∈ X . It may be also described in terms of a design vector ξ = (ξ1, . . . , ξk)T

satisfying ξ ≥ 0,
∑

i ξi = 1 with the meaning that the matrix X has 100ξi% rows xT
i ,

i = 1, . . . , k.



c-variance. Let X be an X -correct matrix, let ξ its associated design and let β̂ be
the OLS-estimator of β. Then var(cTβ̂) = σ2

N · varc(ξ), where σ2 is the variance of
error terms, N stands for the number of observations and

varc(X) := varc(ξ) := cT

(
k∑
i=1

ξi · xixT
i

)−1

c,

where (·)−1 stands for the matrix (pseudo)inverse. Obviously, varc(ξ) measures the
contribution of the design ξ to the total variance of cTβ̂.

Problem statement. Exact version. Input: a finite rational experimental domain
X , a rational vector c 6= 0 and a natural number N .

Output: An N -row X -correct matrix such varc(X) is minimal (i.e., for any N -row
X -correct matrix X ′ it holds varc(X) ≤ varc(X

′)).

Problem statement. Approximate (or: asymptotic) version. Input: a finite
rational experimental domain X and a rational vector c 6= 0.

Output: A design ξ over the domain X such that varc(ξ) is minimal (i.e., for any
design ξ′ over the domain X , it holds varc(ξ) ≤ varc(ξ

′).



Said loosely. Exact version: Given N (standing for the number of observations),
find “the best” design ξ such that Nξ is integral. Approximate version: do not care
about integrality.

Theorem [Harman, Jurík, 2008]. The approximate version of the problem is solvable
via linear programming.

Corollary 1. The approximate version is solvable in polynomial time.

Corollary 2. Any approximately optimal design is N -exact for some N .

(We know some estimates on such N , but they do not seem to be very useful in
practice; for example, N can be exponential in the size of the experimental domain;
but, possibly, in special cases this can be improved.)



For complexity-theoretic classification we need decision versions of the
problems.

Exact version (EOD): Given N , c, X and S2, is there an N -row X -exact matrix
X satisfying varc(X) ≤ S2? Or: is it possible to design an N -exact experiment with
c-variance at most S2?

Approximate version (AOD): Given c, X and S2, is there a design ξ satisfying
varc(ξ) ≤ S2? Equivalently: is it possible to find an N and an N -exact experiment
with c-variance at most S2?

Theorem [Černý, Hladík, 2010] EOD is NP-complete.

Theorem [Černý, Hladík, 2010] AOD is P-complete.

To recall: a set A is P-complete, if any set in P (the class of sets decidable in Turing
polynomial time) is reducible to A via a function computable in Turing logarithmic
space.

A set A is NP-complete, if any set in NP (the class of sets decidable in Turing
nondeterministic polynomial time) is reducible to A via a function computable in
Turing polynomial time.



Consequences of P-completeness of AOD (under some broadly-accepted complexity-
theoretic conjectures).

• The problem is not in the NC-hierarchy. (Recall that NC , the Nick’s Class,
is the class of problems that are said to be “well-computable in parallel”, i.e.
problems decidable with circuits of polynomial size and polylogarithmic depth.)
Hence, AOD is not well-computable in parallel. So we cannot expect that the
problem could be solvable by parallel systems much faster than by sequential
computers.

• General linear programming is reducible to AOD, i.e. any algorithm for AOD
is able to solve any general linear program. So, any designer of an algorithm for
AOD is, in fact, designing a general-purpose algorithm for linear programming.
(This gives some limits to such a designer. On the other hand: could this approach
bring some new ideas to the theory of linear programming algorithms?)



Consequences of NP-completeness of EOD (under some broadly-accepted
complexity-theoretic conjectures).

• The problem is not decidable in polynomial time.

• A nice example: any algorithm for EOD is able to break the RSA cryptographic
protocol.

How to do that? The RSA protocol relies on the following belief. Given two primes p1

and p2, let n := p1p2. The problem given n, find p1 and p2 is believed to be extremely
difficult.

We can do this. It is easy to write down a boolean formula f (p1, p2, n) (where p1, p2, n

are regarded as bit strings) such as f is true if and only if n = p1p2. We substitute
the bits of n into f as constants and leave the bits p1 and p2 as free variables. Then,
breaking RSA is equivalent to finding any satisfying assignment (p1, p2) to f .

We can convert f into an instance ofEOD. We can show that from the optimal design
found by any algorithm for EOD we can recover the satisfying assignment to f ,
and hence to find the two prime factors.

By the way: this is a nice testing instance for any such algorithm.



Unnatural instances of the design problem. The statement of the problem
EOD is so general such that it admits instances that “a statistician would never think
of”, here called “unnatural”. For example: the instance for factoring an n-bit integer
requires dimension ≈ 16n2 (dimension = number of regression parameters).

It is a usual situation in complexity theory: from the large space of all instances, the
theory selects a (usually small) subset, sometimes called complexity core, making the
problem difficult. Often it happens that the core instances are unnatural for the theory
which motivated the formulation of the problem.

At present, we cannot find an instance of the design problem that would be both hard
(i.e. sufficient to prove NP-completeness) and natural for statistics.

Question. Is it possible to define, in an exact sense, what the “natural instance”
of the design problem is? Is it possible to define a restriction of the design problem
that would rule out unnaturalness? (Of course, we cannot e.g. restrict dimension, as
complexity theory always studies asymptotic behaviour.) Then, is the problem rest-
ricted to the natural instances NP-complete again? Is the property “being natural”
decidable in polynomial time?

Thank you for attention.


