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the regression problem

use high throughput spectral data (NMR, GC-MS, NIR) :

X = (x1, . . . ,xp), xj ∈ Rn
, j = 1, . . . , p < n

to predict the response(s) of interest : Y = (y1, . . . ,yq), q < p



the regression problem

focus on a single response q = 1

deal with high dimensionality of the data

take into account the spectral form of the data



the regression problem

focus on a single response q = 1

deal with high dimensionality of the data

take into account the spectral form of the data

find spectral regions relevant for prediction



PLS regression

Solve the normal equations :

1

n
A β =

1

n
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′
X, b = X

′
y

The PLS regression coefficient bβpls
m is a Krylov solution :

bβplsm = argminβ

n
(y − by)

′
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o
, by = Xβ, β ∈ Km( b, A)

for

Km( b, A) = span( b, A
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for

Km( b, A) = span( b, A
1
b, . . . , A

m−1
b).

truncate bβls on the first m conjugate gradient directions

efficient dimension reduction & excellent prediction performance

PLS solution not easy to interpret, nonlinear function of response



Wavelets and DWT

orthonormal basis functions that allow to locally decompose a function f

f(x) =
X

r,k∈Z
dr,k ψr,k(x),

ψr,k : the mother wavelet,

dr,k : the wavelet coefficients,

r, k : integers that control translations and dilations



Wavelets and DWT

orthonormal basis functions that allow to locally decompose a function f

f(x) =
X

r,k∈Z
dr,k ψr,k(x),

ψr,k : the mother wavelet,

dr,k : the wavelet coefficients,

r, k : integers that control translations and dilations

Discrete Wavelet Transform (DWT):

orthogonal matrix W ′W = WW ′ = I

extremely fast to compute (pyramid algorithm)



Spectral regions relevant for prediction

out-of-scope : denoise and reconstruct spectra

our goal : flag the spectral regions that are relevant for prediction



Spectral regions relevant for prediction

out-of-scope : denoise and reconstruct spectra

our goal : flag the spectral regions that are relevant for prediction

rationale :

rescale the PLS regression coefficient vector

rescaling takes place in the wavelet domain. It takes into account:

1. local features of the spectra captured in the wavelet coefficients

2. information on the response inherent to PLS regression

select a few non zero wavelet coefficients dr,k based on their relevance for

prediction



DW preconditioning Krylov subspaces

Use the discrete wavelet matrix W to precondition the normal equations:

1

n
W A β =

1

n
W b, (1)

solve on the transformed coordinates :

1

n
W AW ′ eβ =

1

n
W b, β ∈ Km(eb, eA) , eA = W AW ′

, eb = W b

recover the original solution in original coordinates by applying the inverse

wavelet transform, that is :

β = W ′ eβ.



DW preconditioning Krylov subspaces

Use the discrete wavelet matrix W to precondition the normal equations:

1

n
W A β =

1

n
W b, (2)

solve on the transformed coordinates :

1

n
W AW ′ eβ =

1

n
W b, β ∈ Km(eb, eA) , eA = W AW ′

, eb = W b

recover the original solution in original coordinates by applying the inverse

wavelet transform, that is :

β = W ′ eβ.

it is often the case in biochemical applications that interpretation in

transformed coordinates is more interesting than in the original coordinates



DW preconditioning Krylov subspaces

precondition Krylov using W to work on the wavelet domain

run PLS on the wavelet domain (Trygg and Wold (1998))

rescale the PLS solution (Kondylis and Whittaker (2007))

1. Initialize (s = 0) with a PLS to define importance factors µ0
m = µ pls

m , as:

µ
s
j = λ

vuuut (
beβ sm,j)2P
j(

beβ sm,j)2 (3)

2. define relevant subset As from µs−1
m using a multiple testing procedure

3. Stop if this subset has not changed. Output: a set of coefficients

{ êβ s∗m,j; j ∈ A s∗} ∪ { êβ s∗m,j′; j′ ∈ B s∗}.

recover the Krylov solution in the original coordinates system



Illustration : cookies data

well known data set in statistical literature

- introduced : B.G. Osborne, T. Fearn, A.R. Miller, and S. Douglas (1984)

- PLS regression on smooth factors (K. Goutis and T. Fearn (1996))

- robust PLS methods (M. Hubert, P.J. Rousseeuw, S. Van Aelst (2008))

- bayesian variable selection (P.J. Brown, T. Fearn, M. Vannucci (2001))



Illustration : cookies data

well known data set in statistical literature

- introduced : B.G. Osborne, T. Fearn, A.R. Miller, and S. Douglas (1984)

- PLS regression on smooth factors (K. Goutis and T. Fearn (1996))

- robust PLS methods (M. Hubert, P.J. Rousseeuw, S. Van Aelst (2008))

- bayesian variable selection (P.J. Brown, T. Fearn, M. Vannucci (2001))

responses : fat, sucrose, dry flour, and water

predictors : 700 points measuring NIR reflectance from 1100 to 2498

nm in steps of 2

we study fat concentration

we keep reflectance for wavelengths ranging from 1380 to 2400 nm

Training set : 1 to 40 - Test set : 41 to 72



Figure 1: Cookies data: regression coefficients for PLS (upper panel), and DW-PLS (lower panel). The

response variable is fat. The number of components has been settled to 5 according to literature knowledge.

The Haar wavelet has been used for DW-PLS.


