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Introduction

We study the competing risks model when the data is
progressively type Il censored with random removals which
follows a binomial distribution. Under the assumptions of
independent causes of failure and using Pareto distribution as
the distribution of lifetime of each unit
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Introduction

We study the competing risks model when the data is
progressively type Il censored with random removals which
follows a binomial distribution. Under the assumptions of
independent causes of failure and using Pareto distribution as
the distribution of lifetime of each unit

@ Competing Risks

@ Censoring is inevitable in the lifetime study

@ Progressive type Il censoring with random removal

@ The data from a progressively Type Il censored sample is
as follows:

(X1:m:na 51: R1)7 (X2:m:n7 527 R2)7 ceey (Xm:m:n, 5/777 Rm)
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Introduction

@ Itis assumed here that the causes of failures follow pareto
distributions. The pareto distribution has been used
commonly to model naturally occurring phenomenon in
which the distributions of random variables of interest have

long tails;
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The Model’'s Assumptions

Notations

@ We put nindependent and identical units on the life test.
The test is terminated when m < n, mis pre-specified,
units failed.

@ The lifetime of i-th unit is denoted by X;,i =1,2,...,n, and
Xj denotes the time of failure of the /-th unit by the cause j
where j = 1,2, so0 X; = min{ Xj1, Xj2}.
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The Model’'s Assumptions

@ F(.): cumulative distribution function of X,

@ Fj(.): cumulative distribution function of Xj;,

@ F;(.): survival function of Xj, Fi(.) =1 — F;(.).

@ ¢;: indicator variable denoting the cause of failure of the
i-th unit.
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The Model’'s Assumptions

@ ¢;: indicator variable denoting the cause of failure of the
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The Model’'s Assumptions

@ The distribution of the random variable Xj; is Pareto with
parameters (o, 3), j =1,2andi=1,2,...,n. The pdf of
Xj, j=1,2,foreachi=1,2,...,n,is

_ op% .
f/-(x)_xaler1 x>p3,8>0,a>0

@ The survival function, sf, and the hazard rate function, hrf,
are respectively

_ B

FJ(X) - X()éj’
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The Model’'s Assumptions

@ When the first failure occurs, (1) we observe two values
Xi.m:n @nd 81 € {1,2} where Xi.m,,., denotes the first order
statistics out of the m failed items, which in turn denotes
the statistics from the whole sample; (2) R; of surviving
unites are randomly selected and removed, where R;
follows binomial distribution with parameters n — m and p.
When the i-th failure occurs, i =2,...,m—1: (1) we
observe two values X;.,,., and ¢; € {1,2}; (2) R; of
surviving unites are randomly selected and removed,
where R; follows binomial distribution with parameters
n—m- Y21 Rrand p.

@ Finally this experiment terminates when the m-th failure
occurs, and (1) we observe two values Xmn.m.n and
5m € {1,2}; (2) the rest Ry = n— m— "™ R; surviving
units are all removed from the test. Here, §; = j, j= 12
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The Model’'s Assumptions

@ Finally this experiment terminates when the m-th failure
occurs, and (1) we observe two values Xm.m.n and
5m € {1,2}; (2) the rest Ry = n— m— ™" R; surviving
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Likelihood function

Maximum Likelihood Estimators and UMVUE

L(e;y’ 57 R) = L1(01y,5|R = r)P(R,p)

where

L1(9;y75‘R:I‘):

c [ [ ) Fa(y)) =D 1ha(yi) F (v) =2 F ()]

i=1

wherec=n(n—n —1)---(n—-n—rp—-—rpy1—m+1)
and F(y;) = F1(yi)Fa(yi)-
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Likelihood function

Maximum Likelihood Estimators and UMVUE

m

1 (a1+az) (XS rit1)
Li(0;y,6|R=r)=coftag (] g

X i-+1
e (Hf; yl.r'+ Jartez

m
1 —( m (p Yi
non atag) > (1) In =
= Cay' oy’ HE e = s B<y1 < <¥m
i=1

where nj = >, I(6;=j) j=1,2.
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Likelihood function

Maximum Likelihood Estimators and UMVUE

T —(arta2) S (r+1)In%
L0y, 5,R)=c* a2 [T]— | e - ?
0y ) 1 % Hyi
xpEit (1 — p)mDn=m=EE Mg <y < <y

where
(n—m)lc

I r,(n—m Z )

c' =
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Likelihood function = \p-imiim Likelihood Estimators and UMVUE

Outline

© Likelihood function
@ Maximum Likelihood Estimators and UMVUE
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Likelihood function

Maximum Likelihood Estimators and UMVUE

n
Sy (Ri+ 1)in%

and Ao = fio _m
X (R+1)g  Z

&y =

where Z =" (R; + 1)ln%.
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Likelihood function

Maximum Likelihood Estimators and UMVUE

To construct the UMVUE’s, we consider the following
transformation (see Balakrishnan and Aggarwala (2000)):
Zy = nXy,

Z, = (n— Ry —1)(X2 — Xq),

Zm:(n—R1 — s — Am_q —m+1)(Xm—Xm_1).

The Z’s are called the spacings. It can be easily seen
(Balakrishnan and Aggarwala (2000)) that Z;’s are i.i.d.
exp(aq + ap) random variables. Therefore,

il (Ri+1)In% = 31 (R + 1)X = 352, Z; is distributed as
a gamma(m, a1 + ) random variable. Since ny is a

Bin(m, —%), and ny is independent of Y7, (R; + 1)X;, we

’ oqtap
haveo for m
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Likelihood function

Maximum Likelihood Estimators and UMVUE

and

E(é\ég): X :m_1><a2
Hence UMVUE’s of oy and a» are given by

5 m-—1 5 m—1
a1 = (o andda, =
m

~

a2

The MLE of parameter p is:

SR
(m—1)(n-m)- X" (m- )R+ X" R;
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Boot-p method

Bootstrap confidence intervals Boot-t method:

@ The percentile bootstrap (Boot-p) proposed by Efron[7],

@ The bootstrap-t method (Boot-t) proposed by Hall[8].
It is observed that in this type of situations (Kundu et al.,
[10]), the non-parametric bootstrap method does not work
well. For a fixed set of R = (ry, ..., rm), we propose the
following two parametric bootstrap confidence intervals for
aq and as.
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Boot-p method
Bootstrap confidence intervals Boot-t method:

Outline

Q Bootstrap confidence intervals
@ Boot-p method
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Boot-p method

Bootstrap confidence intervals Boot-t method:

@ Estimate a4 and ap, say &4 and a,, from the sample
{(X1:m:na 51» R1 )7 (X2:m:na 02, RZ)a s (Xm:m:na 5m, Rm)}-

@ Generate a bootstrap sample {X7.,. .,..., Xy.m.n}, Using
@1, 642, R1,...,Rm.

@ Obtain the bootstrap estimate of oy and ap, say &7 and a3
using the bootstrap sample.

° Rep@t\ Step [2] NBOOT times.

@ Let CDFj(x) = P(&j’f < x) be the cumulative distribution

— —1
function of &7, j = 1,2. Define &; goot—p(X) = CDF; () for
a given x.
@ The approximate 100(1 — )% confidence interval for «; is

given by
(805 () oo (1 3)).
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Bootstrap confidence intervals Boot-t method:
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Bootstrap confidence intervals Boot-t method:
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Boot-p method
Bootstrap confidence intervals Boot-t method:

Outline

Q Bootstrap confidence intervals

@ Boot-t method:
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Boot-p method

Bootstrap confidence intervals Boot-t method:

@ Estimate a4 and ap, say &1 and ay, from the sample
{(X1:m:n5 61, R1), (Xo:m:n» 02, R2), . .., (Xm:m:n, Om, Rm) }-

@ Generate a bootstrap sample { X} s Xom:nts USING
@1, dg, R1,...,Rm.

@ Obtain the bootstrap estimate of ay and ap, say 47 and a5
using the bootstrap sample.

@ compute the variance of 47, say V(7).

@ Determine the 7" statistic

m:n’
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Boot-p method

Bootstrap confidence intervals Boot-t method:

@ Generate a bootstrap sample { X}
6[1, dz: R17"'7Rm-

@ Obtain the bootstrap estimate of ay and ap, say 47 and a5
using the bootstrap sample.

@ compute the variance of 47, say V(7).
@ Determine the 7" statistic

mny ot aX;v:m:n}; using
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Boot-p method

Bootstrap confidence intervals Boot-t method:

@ Obtain the bootstrap estimate of ay and ap, say 47 and a5
using the bootstrap sample.

@ compute the variance of 47, say V(7).
@ Determine the 7" statistic
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Boot-p method

Bootstrap confidence intervals Boot-t method:

@ Determine the T/* statistic
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Boot-p method

Bootstrap confidence intervals Boot-t method:

@ Repeat Steps [1] to [4] NBOOT times.

@ Let C/D\Fj(x) = P(T; < x) be the cumulative distribution
function of 77, j = 1,2. For a given X, define

A A I e
&j,Boot—t(X) = &; + m~2,/V(&;)CDF; (x).

@ The approximate 100(1 — v)% confidence interval for o; is

given by
(OAéj,Boot—t (%) »aj,Boot—t (1 - %)) .
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Bootstrap confidence intervals Boot-t method:
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Boot-p method

Bootstrap confidence intervals Boot-t method:

@ The approximate 100(1 — v)% confidence interval for o; is
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Bayesian Analysis

We assume a1 and ap are independently distributed with
gamma(ay, by) and gammay(ao, bo) priors, respectively, and the
parameter (3 is assumed to be known. Then the posterior
density of oy and ap based on the gamma priors is given by

1 _—(b m (r411)In %

I, 02ly,R=r) = ko™ e CEMIGULI L
m oo v

a22+32*1 e (b2+2f:1(f/+1)|” é)QZ

Here, k is the normalizing constant that ensures
(a1, a2ly, R=r) is a proper density function. Hence the Bayes
estimates of «y and ap under square loss are

& = Mt a and
BT b+ S (1)
N _ Ny + a
“2Bayes = ST (1 1)in %
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Numerical example

Table: (1), Original sample from Lawless

tj 5/’ tj (5,’ tf 5,’ tj (5,’ tj 5,’ tj
11 | 2] 708 | 2] 1990 | 1 | 2551 | 1 | 2831 | 2 | 3504
35 | 2| 958 | 2 || 2223 | 1 | 2565 | x || 3034 | 1 4329
49 [ 2] 1062 | 2 || 2327 | 2 | 2568 | 1 || 3059 | 2 | 6367
170 | 2 || 1167 | 1 || 2400 | 1 || 2694 | 1 || 3112 | 1 6976
329 | 2 || 1594 | 2 || 2451 | 2 || 2702 | 2 || 3214 | 1 7846
381 | 2| 1925 |1 || 2471 | 1 || 2761 | 2 || 3478 | 1 || 13403
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Numerical example

Here we have n =36, ny =17, no = 16, n* = 3,

STt =99245.

Using the above data, without censoring, with 5 =11 we
computed the MLE of the parameters a4, az, corresponding
variances of these estimates and the 0.95% C.I. of ay, as.
Table 2 gives the results obtained.

Table: (2), Parameter’s estimation using the original sample

parameter | MLE Var 95% C.1.
aq 0.1045 | 6.153 x 10~% | [0.0967, 0.1126]
Qg 0.0984 | 5517 x 10~* | [0.0907, 0.1061]
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Numerical example

Table: (8), Progressive Type Il censoring samples

m=15p=0.2
R [4,5,1,2,2,2,0,0,2,1,0,1,0, 1, 0]
X,9) | (11,2),(170,2),(708,2),(1167,1),(2327,2),(2471,1),(2568,1),(2
(2761,2),(3034,1),(3214,1),(3504,1),(6367,*),(6976,1),(13¢
m=20,p=0.2
R [2,3,4,22,1,1,0,0,0,0,1,0,0,0,0,0,0,0, 0]
(X, 9) (11,2),(170,2),(708,2),(1167,1),(1990,1),(2471,1),(2568
(2702,2),(2761,2),(2831,2),(3034,1),(3059,2),(3214,1),(34
(3504,1),(4329,1),(6367,%),(6976,1),(7846,1),(13403,1
m=25p=02
R

[3,01020201000010000000,0,O0.

()
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Numerical example

Table: (4), Progressive Type Il censoring samples

m=15p=0.5
R [7,7,4,0,2,1,0,0,0,0,0,0,0,0, 0]
(X,4) | (11,2),(1062,2),(1594,2),(2327,2),(2702,2),(3034,1),(3112,1]
(3478,1),(3504,1),(4329,1),(6367,%),(6976,1),(7846,1),(1°
m=20,p=0.5
R 9231,1,000,0,0,0,0,0,0,0,0,0,0,0, 0
(X, 9) (11,2),(1062,2),(1990,1),(2471,1),(2565,%),(2568,1),(26'
(2702,2),(2831,2),(3034,1),(3059,2), (3112,1),(3214,1),(3
(3504,1),(4329,1),(6367,%),(6976,1),(7846,1),(13403
m=25p=0.5
R [8,8,1,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |

Reza Hashemi and Jabar Azar



Numerical example

Table: (5), The MLE, Variances and C.I. for the data in table 3

m=15p=0.2
parameter | MLE Var 95% C.1.
01 0.0602 | 4.1547 x 10~% | [0.0535, 0.0668]
0o 0.0376 | 2.6838 x 104 | [0.0323, 0.0430]
m=20,p=0.2
parameter | MLE Var 95% C.1.
o 0.0735 | 4.6152 x 10~% | [0.0666, 0.0806]
ap 0.0468 | 3.0065 x 104 | [0.0411, 0.0525]
m=25p=0.2
parameter | MLE Var 95% C.1.
o 0.0926 | 5.5791 x 104 | [0.0849, 0.1004]
ap 0.0556 | 3.3818 x 10~ | [0.0496, 0.0616]
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Numerical example

Table: (6), The MLE, Variances and C.I. for the data in table 3

m=15p=0.5
parameter | MLE Var 95% C.1.
o 0.0693 | 4.8434 x 10~* | [0.0621, 0.0765]
as 0.0308 | 2.2742 x 10~° | [0.0259, 0.0357]
m=20,p=0.5
parameter | MLE Var 95% C.I.
o 0.0824 | 5.6124 x 10~% | [0.0747, 0.0902]
as 0.0488 | 3.7332 x 10~* | [0.0425, 0.0551]
m=25p=0.5
parameter | MLE Var 95% C.I.
o 0.0836 | 5.1272 x 10~* | [0.0726, 0.0909]
o 0.0643 | 3.9871 x 10~* | [0.0577, 0.0708]
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