Spatial Distribution of Trees

Makiko Oda Graduate School of Environmental Science, Okayama University Fumio Ishioka School of Law, Okayama University Koji Kurihara Graduate School of Environmental Science, Okayama University

Purpose

- Target Forest
- Data
- Forest Structure
- Voronoi Diagram
- Echelon Dendrogram
- Patch detection
- Conclusion

- "Forest monitoring" are conducted in many forests for a long term.
- □ Most of these forests studies focused on tree distributions.
- We newly developed Echelon analysis as an analysis method from a hierarchic structure point of view.
 - We developed patch detection in forest using Echelon Dendrogram.

Target Forest

- Data are in Forest Dynamics
 Data Base which had been
 compiled by the Forestry and
 Forest Products Research
 Institute.
- We focused on Ogawa Forest Reserve because this forest data have many information of trees.
- □ The site is a square of 300m × 200m (6ha).
- We focused on mature trees.

Ref. FDDB http://fddb.ffpri-108.affrc.go.jp/index.html

Data

		Coordinate		Individual ID	Girth
About 5000	Species	X	Y	IND_ID	GBH
	Acer mono	12.08235	197.9678	2	97.8
	Acer nikoense	10.35074	185.4226	16	16.5
	Carpinus cordata	15.52746	182.8161	17	15
	Swida controversa	17.90099	182.9994	20	132.9
	•••	•••	•••	•••	•••
	Quercus serrata	295.3504	4.818616	5885	62.1

Data : GBH

- Girth at Breast Height
 - Each tree girth is measured at 1.3m.
- □ Advantage
 - There is an allometry equation between a breast height diameter and tree height.
 - "GBH" is used as a tree size.

$$\frac{1}{H_{i,t}} = \frac{1}{\alpha_t D_{i,t}^{h_t}} + \frac{1}{H_{\max t}}$$

$$H_{i,t}(m): i - \text{th tree height of species } t$$

$$D_{i,t}(cm): i - \text{th breast height diameter of species } t$$

$$\alpha_t, h_t, H_{\max}: \text{ each constant}$$

Forest Structure

The forest has two kinds of layers.

a upper layer, canopy; a under layer, understory

□ There are gaps which divide layers of canopy and understory.

Voronoi Diagram

□ Tree locations are point data.

- change to regional data using Voronoi diagram.
- This Voronoi Diagram made from canopy trees and trees in a gap.
- Each Voronoi region shows an occupied area by canopy tree.
 Canopy layers have no room except a gap.

Echelon Dendrogram

- Echelons are based on the areas of relative high and low values of response variables of spatial data.
- The echelon approach gets together the areas in which the values have the same topological structure and makes hierarchically related structure of these areas.
- Echelon Dendrogram is the graph that shows hierarchically the structure.

Tow dimensional data sorted by surface value

Patch Detection

□ It takes about 50 years to change whole forest.

- Small changes occur by fall-tree or grow-up tree.
- We take notice of a patch.
- □ Patch definition (Forman et al., 1986)
 - A nonlinear surface area differing in appearance from its surroundings.
- Many kinds of forest consist of mosaic structure of patches.
 (Nakashizuka, 1987)
 - Patches detection by using Echelon Dendrogram is useful.
 - Existing method is not objective such as appearance check.

Patch Detection

- A patch is detected on the basis of bigger tree.
- Echelon Dendrogram is made based on neighboring information.
 [EN5] does not view a patch.
 A patch is too large.

Echelon dendrogram

Patch Detection

Canopy : Patch Detection

□ A forest has two layers.

- Parches were detected in each layer.
- 10 patches were established based on larger trees in peaks.
- □ Patch shapes are irregular.

Canopy : Patch Detection

- In general, a tree is classified according to shade tolerance.
 - Shade-Intolerant
 - Shade-Tolerant
- Shade-Tolerant tree biomass increases with time.

Canopy : Patch Detection

- Shade tolerance is added in each patch.
 - Distributions of Shade-Tolerant trees and Shade-Intolerant trees were not regulation in patches.
 This forest may be at transition stage.

Understory:Patch Detection

- 20 patches are similarly detected in understory.
 - Most of trees are Shadetolerant because of understory.

Comparing Patch : Canopy and Understory

□ A part of overlapping gaps and Shade-Intolerant trees. There were patch's Shade-Intolerant trees in gaps. Shade-Intolerant trees grow up in sunlight area.

Comparing Patch : Canopy and Understory

- A part of overlapping Shade-Tolerant trees and Shade-Intolerant trees.
 - Shade-Intolerant trees don't have thick leave.
 - Shade-Intolerant trees of understory grow up under Shade-Intolerant trees of canopy.

Conclusion

- We developed patches detection methods using Echelon Dendrogram.
- □ Characteristics and heterogeneous characters of forest structure can be shown by using Echelon Dendrogram.
- □ We want to show a time series variation in the future.