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Clusterwise regression: introduction
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Linear Regression: prediction of dependent variable on
the basis of independent variable(s)



Clusterwise regression: introduction
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Clusterwise Linear Regressio)ﬁ: Assign observations to
different subgroups and specify a seperate regression
model for each subgroup
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Clusterwise regression: introduction

LIFLISHIAINN IH3I

» “Clusterwise linear regression” (CR) introduced by
Spéath (1979, 1982)

« Model:

dependent variable independent variables

partitioning || cluster specific partitioning clusterspecific
regression constants regression slopes

* Loss function:

c J

L= Z(y| (Z pICbOC +zz pICXIj jC

c=1l j=1
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MultiLevel Clusterwise Regression
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« Many adaptions: repeated observations per subject
(a.0. DeSarbo, Oliver & Ramaswamy, 1989)

« Observations for the same subject are always assigned
to the same cluster

 In this presentation we speak of MultiLevel Clusterwise
Regression (MLCR) in the case of multiple observations

 Model:

C C
b ¥ yik = Z pkcbOc "‘Zz pchikjbjc
c=1 1

c=1l j=1
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Simulation Study: background

LI3LISHIAINN

* CR very popular (f.e. in marketing field, social
science, psychology,...).

 Limited number of simulation studies, ...

* Moreover, Brusco, Cradit, Steinley & Fox (2008)
formulated some critical comments
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LIFLISHIAINN IH3I

Simulation Study: background

» Clusterwise linear regression methods can lead to
considerable overfitting (Brusco et al., 2008)

=> Estimations of partitioning and regression weights
are often unreliable

* Much of this overfitting is a consequence of an
overestimation of the between cluster variance

D=9 = YN -+ X -9+ X -9

N N N N

total variance between-cluster within-cluster error variance
variance variance
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Simulation Study: goals

Goals:

1) Investigate the performance (overfitting & goodness-
of-recovery) of (ML)CR

2) Hypothesis: overestimation of the between-cluster
variance

3) Exploratory: What about the within-cluster variance?

4) Influence of several factors, among others number
of observations per subject
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Simulation Study: design

N3AN31

LI3LISHIAINN 3H3

In total:

* Number of clusters: 2-4

* Number of independent variables: 1-3

* Number of subjects: 20-60-100

 Number of observations per subject: 1-3-10-50
* Ratio of cluster size: 3 conditions

* Error: 0%, 20%, 40% of total variance

 Ratio explained variance: 10 conditions

* 5 replications per cell

—2X2X3Xx3xXx3x4x10x5=21600 datasets

« algorithm: simulated annealing
* 25 runs, solution with best fit to data is retained



Simulation Study: results for overfitting
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1 observation per subject: 65% ! of datasets
(2% local minima)

3 observations per subject: 50% ! of datasets
(2% local minima)

10 observations per subject: 22% of datasets
(5% local minima)

50 observations per subject: 5% of datasets
(6% local minima)

I Only overfit for datasets with error!

Note: overfit= loss function value of reconstructed solution < best
possible loss function value given true partitioning
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Results: overfitting of between- and
within-cluster variance

Means and Confidence Intervals for Each Group
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Note: overfit of between-cluster variance = Z Nc (yc - y) — Z Nc (yc -y )
c=1 c=1
| |

overfit of within-cluster variance Z Y, — z
i=1 i=1



Results: goodness of recovery
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Means and Confidence Intervals for Each Group
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— Mean adjusted Rand Index
—Mean MADB measure
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Conclusion/ Discussion
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« Regular clusterwise linear regression in general performs
poorly with regard to overfitting and recovering the true
underlying model

 QOverfitting is attributable to both an overfitting of the
between-cluster variance and an overfitting of the within-
cluster variance

« The performance of CR can be greatly improved by
Increasing the number of observations per subject
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