A Power Comparison for Testing Normality

Shigekazu Nakagawa, Hiroki Hashiguchi, and Naoto Niki

Kurashiki University of Science and the Arts Saitama University Tokyo University of Science

COMPSTAT2010, Paris-France, Aug. 22-27

Table of Contents

- Background Motivation Problem
 - Omnibus test statistics for normality
 - Modified Jarque-Bera test statistic
- Power study
 - Monte Carlo simulation
 - Alternative distributions are contaminated normal distributions
- Summary

Background

Jarque-Bera (1987) pointed out that a Lagrange multiplier test is equivalent to ${\it JB}$ test against the Pearson distributions.

Jarque-Bera

$$JB = n \left(rac{\sqrt{{b_1}^2}}{6} + rac{({b_2} - 3)^2}{24}
ight),$$

where for a random sample (X_1,X_2,\ldots,X_n) , $\sqrt{b_1}=m_3/m_2^{3/2}$, $b_2=m_4/m_2^2$, $m_j=(1/n)\sum_{i=1}^n(X_i-\bar{X})^j$, j=2,3,4.

 $lacksquare JB \sim \chi_2^2 \quad (n o \infty)$ under H_0 .

Motivation

- However, the χ^2 approximation does not work well.
- Unfortunately, a normalizing tr. has not been given yet.

Proposed test statistic

Nakagawa et al. (2007) proposed a modified version of the Jarque-Bera test.

Modified Jarque-Bera test

$$JB' = rac{\sqrt{b_1}^2}{6} + rac{b_2^2}{24}$$

ullet A normalizing tr. of the null dist. for JB' has been derived.

Our goal

- When is the power of JB' test superior to that of JB?
- As H₁, the contaminated normal distributions are considered.

Power study 1

- Let X_1, X_2, \ldots, X_n be i.i.d. rv with a cdf F.
- ullet Φ : the cdf of the standard normal distribution

Omnibus testing for normality (two sided)

$$H_0$$
: $F(x) = \Phi\left(rac{x-\mu}{\sigma}
ight) \ \ (orall x \in \mathbb{R})$

$$H_1 \colon F(x)
eq \Phi\left(rac{x-\mu}{\sigma}
ight) \quad (\exists x \in \mathbb{R})$$

- ullet μ and σ may be known or unknown
- ullet We consider JB', JB, and Shapiro-Wilk SW tests.
- As H_1 , contaminated normal distributions are considered:

$$F = (1 - p)N(\mu_0, \sigma_0^2) + pN(\mu, \sigma^2)$$

 CN covers a broad range of distributions, symmetric and asymmetric ones.

Power study 2

$$H_0: X_1, X_2, \dots, X_n \overset{\text{i.i.d.}}{\sim} N(0, 1)$$

 $H_1: X_1, X_2, \dots, X_n \overset{\text{i.i.d.}}{\sim} (1 - p)N(0, 1) + pN(\mu, \sigma^2)$

	Ex.	\boldsymbol{n}	μ	\boldsymbol{p}	σ	
	1	100	0	0.10	1, 2, 3, 4, 6	Sym.
	2	100	0	0.50	1, 2, 3, 4, 6	Sym.
	3	200	0	0.80	1, 2, 3, 4, 6	Sym.
	4	50	3	0.50	1, 2, 3, 4, 6	Asym.
	Ex.	\boldsymbol{n}	σ	$oldsymbol{p}$	$oldsymbol{\mu}$,
-	Ex. 5	$\frac{n}{50}$	$rac{\sigma}{4}$	$\frac{p}{0.05}$	$\frac{\mu}{0,1,2,3,4}$	Asym.
-					<u> </u>	Asym.
-	5	50	4	0.05	0, 1, 2, 3, 4	•

- significance level: $\alpha = 0.1$
- ullet the number of replications: 10^4
- ullet Omnibus test statistics: JB, JB', and SW

Ex.1: $n = 100, \mu = 0, p = 0.1, \sigma = 1, 2, 3, 4, 6$

- curves in red: pdf of N(0,1).
- curves in blue: pdf of $F = (1-p)N(0,1) + pN(\mu,\sigma^2)$.

Ex. 1: Powers of JB', JB, SW

Ex. 2: $n = 100, \mu = 0, p = 0.5, \sigma = 1, 2, 3, 4, 6$

- curves in red: pdf of N(0,1).
- curves in blue: pdf of $F = (1-p)N(0,1) + pN(\mu,\sigma^2)$.

Ex. 2: Powers of JB', JB, SW

Ex. 3: $n = 200, \mu = 0, p = 0.8, \sigma = 1, 2, 3, 4, 6$

- curves in red: pdf of N(0,1).
- curves in blue: pdf of $F = (1-p)N(0,1) + pN(\mu,\sigma^2)$.

Ex. 3: Powers of JB', JB, SW

Ex. 4: $n = 50, \mu = 3, p = 0.5, \sigma = 1, 2, 3, 4, 6$

			3		
$\overline{\sqrt{eta_1}}$	0.00	0.65	0.92	0.96	0.83
$\boldsymbol{\beta_2}$	2.04	2.85	0.92 3.72	4.37	5.11

- curves in red: pdf of N(0,1).
- curves in blue: pdf of $F = (1-p)N(0,1) + pN(\mu,\sigma^2)$.

Ex. 4: Powers of JB', JB, SW

Ex. 5: $n = 50, \sigma = 4, p = 0.05, \mu = 0, 1, 2, 3, 4$

- curves in red: pdf of N(0,1).
- curves in blue: pdf of $F = (1-p)N(0,1) + pN(\mu,\sigma^2)$.

Ex. 5: Powers of JB', JB, SW

Ex. $6: n = 50, \sigma = 1.0, p = 0.5, \mu = 0, 1, 2, 3, 4$

- curve in red: pdf of N(0,1).
- curves in blue: pdf of $F = (1-p)N(0,1) + pN(\mu,\sigma^2)$.

 $\mu = 0$

Ex. 6: Powers of JB', JB, SW

Ex. 7: $n = 50, \sigma = 4.0, \mu = 0, p = 0.0, 0.1, \dots, 1.0$

$$\begin{array}{c|ccccc}
 & \sqrt{\beta_1} = 0 \\
p & 0.00 & 0.20 & 0.50 & 0.70 & 1.00 \\
\hline
\beta_2 & 3.00 & 9.75 & 5.34 & 4.07 & 3.00
\end{array}$$

p = 0.0

p = 0.5

p = 1.0

- curves in red: pdf of N(0,1).
- curves in blue: pdf of $F = (1-p)N(0,1) + pN(\mu,\sigma^2)$.

Ex. 7: Powers of JB', JB, SW

Summary

Ranking:

Ex.	1	2	3	4	5	6	7
\overline{JB}	2	3	2	2	2	2	3
JB'	1	1	1	3	1	3	1
SW	3	2	1	1	3	1	2
1	S	S	S	Α	Α	S	S
2	HT	HT	HT	HT~ST	HT	ST	HT

- JB' test is the best for symmetric dist. with heavy tails.
- ullet JB' test is superior to JB test except for dist. with short tails.
- ullet The power of JB' and JB is poor for dist. with short tails.

¹S:Symmetric, A:Asymmetric

²HT:Heavy tails, ST:Short tails

Normalizing tr. of the null dist. for JB'

Normalizing tr. of the null dist. for JB^\prime

Under the null hypothesis H_0 , let

$$A=6+\frac{8}{\sqrt{\beta_1}(JB')}\left[\frac{2}{\sqrt{\beta_1}(JB')}+\sqrt{1+\frac{4}{\left(\sqrt{\beta_1}(JB')\right)^2}}\right],$$

and then, a transformed variate

$$\left(\left(1 - \frac{2}{9A}\right) - \left(\frac{1 - (2/A)}{1 + Z\sqrt{2/(A - 4)}}\right)^{1/3} \right) / \sqrt{2/9A}$$

is asymptotically distributed as a standard normal distribution, where

$$Z=rac{JB'-\mu_1'(JB')}{\sqrt{\mu_2(JB')}}$$
 and

$$\sqrt{\beta_1}(JB') \quad = \quad \frac{8\sqrt{6}}{n^{1/2}} + \frac{2750\sqrt{6}}{9} \frac{1}{n^{3/2}} - \frac{33968\sqrt{6}}{9} \frac{1}{n^{5/2}} + O\left(\frac{1}{n^{7/2}}\right),$$

Shapiro-Wilk test

Shapiro-Wilk test

$$SW = \frac{\left(\sum_{i=1}^{[n/2]} a_i \left(X_{(n-i+1)} - X_{(i)}\right)\right)^2}{\sum_{i=1}^{n} \left(X_i - \bar{X}\right)^2}$$

• $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}$ are the ordered statistics.

Related works

- ullet In 1987, Jarque and Bera proposed the JB test.
 - Jarque, C. M. and Bera, A. K.A test for normality of observations and regression residuals. *Inter. Statist. Rev.*, **55**(2), 163–172, 1987.
- In 2007, Nakagawa et. al. proposed a modified version of the Jarque-Bera test JB'.
 - Nakagawa, S. and Niki, N. and Hashiguchi, H. An Omnibus test for normality. Proc of the ninth Japan-China sympo. on statist., 191–194,2007.
- In 2007, a power comparison was conducted through Monte Carlo simulation assuming the contaminated normal distributions as H_1 .
 - Thadewald, T. and Buning, H. Jarque-Bera test and its competitors for testing normality-A power comparison *J. of Appl. Statist.*, **34**(1), 87–105. 2007.