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Suppose a random process X(t), t ∈ [0, 1], with finite second moment is
observed in a finite number of points (sampling designs). At any
unsampled point t, we approximate the value of the process by a
composite Hermite spline. The approximation performance on the
entire interval is measured by mean errors. In this talk we deal with two
problems:

� Investigating accuracy of such interpolator in mean norms

� Constructing a sequence of sampling designs with asymptotically
optimal properties
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Basic notation

Let X = X(t), t ∈ [0, 1], be defined on the probability space (Ω,F , P ).
Assume that, for every t, the random variable X(t) lies in the normed
linear space L2(Ω) = L2(Ω,F , P ) of zero mean random variables with finite
second moment and identified equivalent elements with respect to P .

We set ||ξ|| =
(
Eξ2

)1/2
for all ξ ∈ L2(Ω) and consider the approximation by

piecewise linear interpolator, based on the normed linear space Cm[0, 1] of
random processes having continuous q.m. (quadratic mean) derivatives up
to order m ≥ 0.
We define the integrated mean norm for any X ∈ Cm[0, 1] by setting

||X||p =

(∫ 1

0

||X(t)||pdt
)1/p

, 1 ≤ p <∞,

and the uniform mean norm ||X||∞ = max[0,1] ||X(t)||.
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Local Hölder’s condition

We say that X ∈ Cm,β([a, b], V (·)) if X ∈ Cm([a, b]) and X(m) is locally
Hölder continuous, i.e., if for all t, t+ s,∈ [a, b],

||X(m)(t+ s)−X(m)(t) || ≤ V (t̄)1/2|s|β , 0 < β ≤ 1, (1)

for a positive continuous function V (t), t ∈ [a, b], and some t̄ ∈ [t, t+ s].

In particular, if V (t) = C, t ∈ [a, b], where C is a positive constant, then
X(m) is Hölder continuous, and we denote it by X ∈ Cm,β([a, b], C)
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Local stationarity

Following Berman(1974) we call process X(t), t ∈ [a, b] ⊆ [0, 1], locally
stationary if there exists a positive continuous function c(t) such that, for
some 0 < β ≤ 1,

lim
s→0

||X(t+ s)−X(t)||
|s|β = c(t)1/2, uniformly in t ∈ [a, b].

We denote the class of processes which m-th q.m. satisfy the above
condition over [a, b] by Bm,β([a, b], c(·)).
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We say that X ∈ CBm,β((0, 1], c(·), V (·)) if there exist 0 < β ≤ 1 and
positive continuous functions c(t), V (t), t ∈ (0, 1], such that
X ∈ Cm,β([a, b], V (·)) and X ∈ Bm,β([a, b], c(·)) for any [a, b] ⊂ (0, 1].
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Processes of interest

Let X(t), t ∈ [0, 1], such that,

X ∈ Cl,α([0, 1],M) ∩ CBm,β((0, 1], c(·), V (·)).

Example:
X(t) = B(

√
t), t ∈ [0, 1], where B(t), t ∈ [0, 1], is a fractional Brownian

motion with Hurst parameter H and the covariance function
r(t, s) = (|t|2H + |s|2H − |t− s|2H)/2

� l = 0, α = H/2

� m = 0, β = H

� c(t) = V (t) = (4t)−H
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Hermite spline

Suppose that for X ∈ Cm([0, 1]), the process and its first r ≤ m derivatives
can be sampled at the distinct design points Tn = (t0, t1, . . . , tn),
0 = t0 < t1 < . . . < tn = 1. The stochastic Hermite spline of order
k = 2r + 1 ≤ 2m+ 1, denoted by Hk(X,Tn) is a unique solution of the
interpolation problem

H
(j)
k (ti) = X(j)(ti), i = 0, . . . , n, j = 0, . . . , r.
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Composite Hermite spline

Define Hq,k(X,Tn), q ≤ k, to be a composite Hermite spline

Hq,k(X,Tn) :=

{
Hq(X,Tn)(t), t ∈ [0, t1]
Hk(X,Tn)(t), t ∈ [t1, 1]

.

Examples:

�

�

0 t1 t 2 t3
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Composite Hermite spline
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0 t1 t 2 t3
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quasi Regular Sequences

We consider quasi regular sequences (qRS) of sampling designs
{Tn = Tn(h)} generated by a density function h(·) via∫ ti

0

h(t)dt =
i

n
, i = 1, . . . , n,

where h(·) is continuous for t ∈ (0, 1] and if h(·) is unbounded in t = 0, then
h(t)→ +∞ as t→ +0. We denote this property of {Tn} by: {Tn} is
qRS(h).
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Regularly varying function

Recall that a positive function f(·) is called regularly varying (on the
right) at the origin with index ρ, if for any λ > 0,

f(λx)

f(x)
→ λρ as x→ 0+,

and denote this property by f ∈ Rρ(O+). A natural example of such
function is a power function, i.e., f(x) = xa ∈ Ra(O+). Moreover we say
that g ∈ Rρ(r(·), 0+) if there exists r(x) ≥ g(x), x ∈ [0, 1] such that
r ∈ Rρ(O+).
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Previous Results

� (Seleznjev, Buslaev 1999)
Optimal approximation rate for linear methods for X ∈ C l,α[0, 1] is
n−(l+α)

� (Seleznjev, 2000)
Results on Hermite spline approximation when X ∈ Bl,α([0, 1], c(·))
and regular sequences of sampling designs are used

||X −Hk(X,Tn)|| ∼ n−(l+α) as n→∞, m ≤ k.
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Problem formulation

We have a process which l-th derivative is α-Hölder on [0, 1].
Can we get the approximation rate better than n−(l+α)?
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Let us define: H(t) =
∫ t

0
h(v)dv, G(s) = H−1(s), and g(s) = G′(s),

t, s ∈ [0, 1].

Let X∈ Cl,α([0, 1],M) ∩ CBm,β((0, 1], c(·), V (·)). We formulate the following
condition for a local Hölder function V and a sequence generating density h:

(C) let g ∈ R+(r(·), 0+), where

r(s) = o(s(m+β)/(l+α+1/p)−1) as s→ 0; (2)

if p =∞, then V (t)1/2r(H(t))m+β → 0 as t→ 0;
if 1 ≤ p <∞ and, additionally, V (G(·))1/2 ∈ R+(R(·), 0+), then
R(H(t))r(H(t))m+β ∈ Lp[0, b] for some b > 0.
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Optimal rate recovery

Theorem
Let X ∈ Cl,α([0, 1],M) ∩ CBm,β((0, 1], c(·), V (·)), l + α ≤ m+ β, with the
mean f ∈ Cm,θ([0, 1], C), β < θ ≤ 1, be interpolated by a composite Hermite
spline Hq,k(X,Tn), l ≤ q, m ≤ k, where Tn is a qRS(h). Let for the density
h and the local Hölder function V , the condition (C) hold. Then

lim
n→∞

nm+β ||X −Hq,k(X,Tn)||p = bm,βk,p ||c
1/2h−(m+β)||p > 0. (3)
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Example

X(t) = B(
√
t), t ∈ [0, 1], where B(t), t ∈ [0, 1], is a fractional Brownian

motion with Hurst parameter H = 0.8. Then

X ∈ C0,0.4([0, 1], 1) ∩ CB0,0.8((0, 1], c(·), V (·)),

where c(t) = V (t) = (4t)−0.8.

We consider the following knot densities

hλ(t) =
1

λ
t
1
λ
−1, t ∈ (0, 1], λ > 0,

say, power densities.
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We consider the mean maximal approximation error of the piecewise
linear interpolator, and compare the efficiency of the designs generated by
the power densities with parameters

� λ1 = 1 (uniform knots distribution)

� λ2 = 2.1
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Figure: Comparison of the uniform mean errors for the uniform density hλ1
(·) and

hλ2
(·) in a log-log scale.

The plot corresponds to the following asymptotic behavior of the
approximation errors:

en(hλ1) ∼ C1 n
−0.4, C1 ' 0.377,

en(hλ2) ∼ C2 n
−0.8, C2 ' 0.295 as n→∞.

For example, the minimal number of observations needed to obtain the
accuracy 0.01 is approximately 8727 for the equidistant sampling density
hλ1 , whereas it needs only 69 knots when hλ2 is used, i.e., Theorem 1 is
applicable.
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Figure: Convergence of the n0.8 scaled uniform mean errors to the asymptotic
constant for the generating density h2(·).
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Thank you !
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