Spline approximation of a random process with singularity

Konrad Abramowicz

Department of Mathematics and Mathematical Statistics
Umeå university

Paris, COMPSTAT Conference, 2010
Coauthor:

Oleg Seleznjev
Department of Mathematics and Mathematical Statistics
Umeå university
Outline

1. Introduction. Basic Notation

2. Results
 Optimal rate recovery

3. Numerical Experiments
Suppose a random process $X(t), t \in [0, 1]$, with finite second moment is observed in a finite number of points (sampling designs). At any unsampled point t, we approximate the value of the process by a composite Hermite spline. The approximation performance on the entire interval is measured by mean errors. In this talk we deal with two problems:

- Investigating accuracy of such interpolator in mean norms
- Constructing a sequence of sampling designs with asymptotically optimal properties
Basic notation

Let $X = X(t), t \in [0, 1]$, be defined on the probability space (Ω, \mathcal{F}, P). Assume that, for every t, the random variable $X(t)$ lies in the normed linear space $L^2(\Omega) = L^2(\Omega, \mathcal{F}, P)$ of zero mean random variables with finite second moment and identified equivalent elements with respect to P. We set $||\xi|| = (E\xi^2)^{1/2}$ for all $\xi \in L^2(\Omega)$ and consider the approximation by piecewise linear interpolator, based on the normed linear space $C^m[0, 1]$ of random processes having continuous q.m. (quadratic mean) derivatives up to order $m \geq 0$. We define the **integrated mean norm** for any $X \in C^m[0, 1]$ by setting

$$
||X||_p = \left(\int_0^1 ||X(t)||^p dt \right)^{1/p}, \quad 1 \leq p < \infty,
$$

and the **uniform mean norm** $||X||_{\infty} = \max_{[0,1]} ||X(t)||$.
Local Hölder’s condition

We say that \(X \in C^{m,\beta}([a, b], V(\cdot)) \) if \(X \in C^m([a, b]) \) and \(X^{(m)} \) is \textit{locally Hölder continuous}, i.e., if for all \(t, t + s, \in [a, b] \),

\[
||X^{(m)}(t + s) - X^{(m)}(t)|| \leq V(\bar{t})^{1/2}|s|^\beta, \quad 0 < \beta \leq 1,
\]

for a positive continuous function \(V(t), t \in [a, b] \), and some \(\bar{t} \in [t, t + s] \).

In particular, if \(V(t) = C, t \in [a, b] \), where \(C \) is a positive constant, then \(X^{(m)} \) is \textit{Hölder continuous}, and we denote it by \(X \in C^{m,\beta}([a, b], C) \)
Local stationarity

Following Berman(1974) we call process $X(t), t \in [a, b] \subseteq [0, 1]$, **locally stationary** if there exists a positive continuous function $c(t)$ such that, for some $0 < \beta \leq 1$,

$$\lim_{s \to 0} \frac{||X(t+s) - X(t)||}{|s|^\beta} = c(t)^{1/2}, \text{ uniformly in } t \in [a, b].$$

We denote the class of processes which m-th q.m. satisfy the above condition over $[a, b]$ by $\mathcal{B}^{m,\beta}([a, b], c(\cdot)).$
We say that $X \in \mathcal{CB}^{m,\beta}((0, 1], c(\cdot), V(\cdot))$ if there exist $0 < \beta \leq 1$ and positive continuous functions $c(t), V(t), t \in (0, 1]$, such that $X \in \mathcal{C}^{m,\beta}([a, b], V(\cdot))$ and $X \in \mathcal{B}^{m,\beta}([a, b], c(\cdot))$ for any $[a, b] \subset (0, 1]$.
Processes of interest

Let \(X(t), \ t \in [0, 1] \), such that,

\[
X \in \mathcal{C}^{l,\alpha}([0, 1], M) \cap \mathcal{CB}^{m,\beta}((0, 1], c(\cdot), V(\cdot)).
\]
Processes of interest

Let $X(t), t \in [0, 1]$, such that,

$$X \in \mathcal{C}^{l,\alpha}([0, 1], M) \cap \mathcal{CB}^{m,\beta}((0, 1], c(\cdot), V(\cdot)).$$

Example:

$X(t) = B(\sqrt{t}), t \in [0, 1]$, where $B(t), t \in [0, 1]$, is a fractional Brownian motion with Hurst parameter H and the covariance function

$$r(t, s) = (|t|^{2H} + |s|^{2H} - |t - s|^{2H})/2$$

- $l = 0, \alpha = H/2$
- $m = 0, \beta = H$
- $c(t) = V(t) = (4t)^{-H}$
Suppose that for $X \in C^m([0,1])$, the process and its first $r \leq m$ derivatives can be sampled at the distinct design points $T_n = (t_0, t_1, \ldots, t_n)$, $0 = t_0 < t_1 < \ldots < t_n = 1$. The stochastic Hermite spline of order $k = 2r + 1 \leq 2m + 1$, denoted by $H_k(X, T_n)$, is a unique solution of the interpolation problem

$$H_k^{(j)}(t_i) = X^{(j)}(t_i), \quad i = 0, \ldots, n, \ j = 0, \ldots, r.$$
Define $H_{q,k}(X, T_n)$, $q \leq k$, to be a **composite Hermite spline**

$$H_{q,k}(X, T_n) := \begin{cases}
H_q(X, T_n)(t), & t \in [0, t_1] \\
H_k(X, T_n)(t), & t \in [t_1, 1]
\end{cases}.$$
Define $H_{q,k}(X, T_n)$, $q \leq k$, to be a **composite Hermite spline**

$$H_{q,k}(X, T_n) := \begin{cases}
H_q(X, T_n)(t), & t \in [0, t_1] \\
H_k(X, T_n)(t), & t \in [t_1, 1]
\end{cases}.$$

Examples:
Define $H_{q,k}(X,T_n)$, $q \leq k$, to be a **composite Hermite spline**

$$H_{q,k}(X,T_n) := \begin{cases} H_q(X,T_n)(t), & t \in [0,t_1] \\ H_k(X,T_n)(t), & t \in [t_1,1] \end{cases}. $$

Examples:

- $H_{1,1}$ (piecewise linear interpolator)
Define $H_{q,k}(X, T_n), q \leq k,$ to be a composite Hermite spline

$$H_{q,k}(X, T_n) := \begin{cases}
H_q(X, T_n)(t), & t \in [0, t_1] \\
H_k(X, T_n)(t), & t \in [t_1, 1]
\end{cases}.$$

Examples:

- $H_{1,1}$ (piecewise linear interpolator)
- $H_{1,3}$
quasi Regular Sequences

We consider quasi regular sequences (qRS) of sampling designs \(\{T_n = T_n(h)\} \) generated by a density function \(h(\cdot) \) via

\[
\int_0^{t_i} h(t) dt = \frac{i}{n}, \quad i = 1, \ldots, n,
\]

where \(h(\cdot) \) is continuous for \(t \in (0, 1] \) and if \(h(\cdot) \) is unbounded in \(t = 0 \), then \(h(t) \to +\infty \) as \(t \to +0 \). We denote this property of \(\{T_n\} \) by: \(\{T_n\} \) is qRS(h).
Recall that a positive function $f(\cdot)$ is called **regularly varying** (on the right) at the origin with index ρ, if for any $\lambda > 0$,

$$\frac{f(\lambda x)}{f(x)} \to \lambda^\rho \quad \text{as} \quad x \to 0^+,$$

and denote this property by $f \in \mathcal{R}_\rho(O+)$. A natural example of such function is a power function, i.e., $f(x) = x^a \in \mathcal{R}_a(O+)$. Moreover we say that $g \in \mathcal{R}_\rho(r(\cdot), 0+)$ if there exists $r(x) \geq g(x), x \in [0, 1]$ such that $r \in \mathcal{R}_\rho(O+)$.
Previous Results

- (Seleznjev, Buslaev 1999)
 Optimal approximation rate for linear methods for $X \in C^{l,\alpha}[0, 1]$ is $n^{-(l+\alpha)}$

- (Seleznjev, 2000)
 Results on Hermite spline approximation when $X \in B^{l,\alpha}([0, 1], c(\cdot))$ and regular sequences of sampling designs are used

$$||X - H_k(X, T_n)|| \sim n^{-(l+\alpha)} \text{ as } n \to \infty, \quad m \leq k.$$
We have a process which l-th derivative is α-Hölder on $[0, 1]$. Can we get the approximation rate better than $n^{-(l+\alpha)}$?
Let us define: \(H(t) = \int_0^t h(v)dv \), \(G(s) = H^{-1}(s) \), and \(g(s) = G'(s) \), \(t, s \in [0, 1] \).
Let us define: $H(t) = \int_0^t h(v)dv$, $G(s) = H^{-1}(s)$, and $g(s) = G'(s)$, $t, s \in [0, 1]$.

Let $X \in C^{l,\alpha}([0, 1], M) \cap CB^{m,\beta}((0, 1], c(\cdot), V(\cdot))$. We formulate the following condition for a local Hölder function V and a sequence generating density h:

\begin{align*}
(C) \text{ let } g & \in \mathcal{R}^+(r(\cdot), 0+) \text{, where} \\
& r(s) = o(s^{(m+\beta)/(l+\alpha+1/p)-1}) \text{ as } s \to 0; \\
& \text{if } p = \infty, \text{ then } V(t)^{1/2}r(H(t))^{m+\beta} \to 0 \text{ as } t \to 0; \\
& \text{if } 1 \leq p < \infty \text{ and, additionally, } V(G(\cdot))^{1/2} \in \mathcal{R}^+(R(\cdot), 0+), \text{ then} \\
& R(H(t))r(H(t))^{m+\beta} \in L_p[0, b] \text{ for some } b > 0.
\end{align*}
Optimal rate recovery

Theorem

Let $X \in \mathcal{C}^{l,\alpha}([0, 1], M) \cap \mathcal{CB}_{m,\beta}^{\alpha}((0, 1], c(\cdot), V(\cdot)), l + \alpha \leq m + \beta$, with the mean $f \in \mathcal{C}^{m,\theta}([0, 1], \mathcal{C}), \beta < \theta \leq 1$, be interpolated by a composite Hermite spline $H_{q,k}(X, T_n)$, $l \leq q, m \leq k$, where T_n is a qRS(h). Let for the density h and the local Hölder function V, the condition (C) hold. Then

$$\lim_{n \to \infty} n^{m+\beta} \|X - H_{q,k}(X, T_n)\|_p = b_{k,p}^{m,\beta} \|c^{1/2} h^{-(m+\beta)}\|_p > 0. \quad (3)$$
Example

\[X(t) = B(\sqrt{t}), \quad t \in [0, 1], \] where \(B(t), \quad t \in [0, 1], \) is a fractional Brownian motion with Hurst parameter \(H = 0.8. \) Then

\[X \in C^{0,0.4}([0, 1], 1) \cap CB^{0,0.8}((0, 1], c(\cdot), V(\cdot)), \]

where \(c(t) = V(t) = (4t)^{-0.8}. \)
Example

\[X(t) = B(\sqrt{t}), \; t \in [0, 1], \] where \(B(t), \; t \in [0, 1], \) is a fractional Brownian motion with Hurst parameter \(H = 0.8. \) Then

\[X \in C^{0,0.4} ([0, 1], 1) \cap CB^{0,0.8} ((0, 1], c(\cdot), V(\cdot)), \]

where \(c(t) = V(t) = (4t)^{-0.8}. \)

We consider the following knot densities

\[h_\lambda(t) = \frac{1}{\lambda} t^{\frac{1}{\lambda} - 1}, \quad t \in (0, 1], \quad \lambda > 0, \]

say, power densities.
We consider the **mean maximal** approximation error of the piecewise linear interpolator, and compare the efficiency of the designs generated by the power densities with parameters

- $\lambda_1 = 1$ (uniform knots distribution)
- $\lambda_2 = 2.1$
Figure: Comparison of the uniform mean errors for the uniform density \(h_{\lambda_1}(\cdot) \) and \(h_{\lambda_2}(\cdot) \) in a log-log scale.

The plot corresponds to the following asymptotic behavior of the approximation errors:

\[
\begin{align*}
 e_n(h_{\lambda_1}) & \sim C_1 n^{-0.4}, \quad C_1 \approx 0.377, \\
 e_n(h_{\lambda_2}) & \sim C_2 n^{-0.8}, \quad C_2 \approx 0.295 \text{ as } n \to \infty.
\end{align*}
\]

For example, the minimal number of observations needed to obtain the accuracy 0.01 is approximately 8727 for the equidistant sampling density \(h_{\lambda_1} \), whereas it needs only 69 knots when \(h_{\lambda_2} \) is used, i.e., Theorem 1 is applicable.
Figure: Convergence of the $n^{0.8}$ scaled uniform mean errors to the asymptotic constant for the generating density $h_2(\cdot)$.
Thank you!