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Suppose a random process X (t),t € [0, 1], with finite second moment is
observed in a finite number of points (sampling designs). At any
unsampled point ¢, we approximate the value of the process by a
composite Hermite spline. The approximation performance on the
entire interval is measured by mean errors. In this talk we deal with two
problems:

¢ Investigating accuracy of such interpolator in mean norms

e Constructing a sequence of sampling designs with asymptotically
optimal properties



Basic notation

Let X = X (t),t € [0,1], be defined on the probability space (2,.%, P).
Assume that, for every ¢, the random variable X (¢) lies in the normed
linear space L*(Q) = L*(Q, #, P) of zero mean random variables with finite
second moment and identified equivalent elements with respect to P.

We set ||¢]| = (E§2)1/2 for all ¢ € L*(Q) and consider the approximation by
piecewise linear interpolator, based on the normed linear space ¥™[0, 1] of
random processes having continuous q.m. (quadratic mean) derivatives up
to order m > 0.

We define the integrated mean norm for any X € ™[0, 1] by setting

1 1/p
X[l = (/ \|X<t>||pdt) . 1<p<oo
0

and the uniform mean norm || X||c = maxpg 1) || X(t)]|.



Local Holder’s condition

We say that X € C™?([a,b],V(-)) if X € C™([a,b]) and X™) is locally
Hélder continuous, i.e., if for all ¢,t + s, € [a, b],

Xt +5) = XM (@) | <VE2s)”,0 < <1, (1)
for a positive continuous function V' (¢),t € [a, b], and some ¢ € [t,t + s].

In particular, if V(t) = C, t € [a,b], where C is a positive constant, then
X is Hélder continuous, and we denote it by X € C™?([a,b],C)



Local stationarity

Following Berman(1974) we call process X (¢),¢ € [a,b] C [0, 1], locally
stationary if there exists a positive continuous function ¢(t) such that, for
some 0 < 8 <1,

L IX(E+5) = X))
550 Is|?

= ¢(t)"?, uniformly in ¢ € [a, b].

We denote the class of processes which m-th q.m. satisfy the above
condition over [a,b] by B™?([a, b], c(-)).



We say that X € CB™”((0,1],¢(-), V(+)) if there exist 0 < 8 < 1 and
positive continuous functions ¢(t), V (¢), t € (0, 1], such that
X € C™([a,b], V() and X € B™#([a,b],c(-)) for any [a,b] C (0,1].



Processes of interest

Let X (t), t € [0,1], such that,

X et ([0,1], M) N CB™P((0,1],¢(-), V().



Processes of interest

Let X(t), t € [0, 1], such that,
X e ch([0,1], M) N CB™P((0,1],¢(-), V(-)).

Example:
X (t) = B(v/1), t € [0,1], where B(t), t € [0,1], is a fractional Brownian
motion with Hurst parameter H and the covariance function
r(t,s) = (It +[s* — |t — s|*7)/2
L] l = O7 o = H/2
e m = ()’ ﬁ = H
o c(t)=V(t)=(4)"

10 /28



Hermite spline

Suppose that for X € C™([0,1]), the process and its first 7 < m derivatives
can be sampled at the distinct design points T, = (to,t1,...,tn),

0=ty <t1 <...<tn,=1. The stochastic Hermite spline of order
k=2r+1<2m+1, denoted by Hi(X,T,) is a unique solution of the
interpolation problem

HO ()= XD,  i=0,...,n, j=0,...,m



Composite Hermite spline

Define Hy (X, Ty), g < k, to be a composite Hermite spline

HQ(X7T")(t)7 te [07 tl]

Ho (X, Tn) = { Hp(X,T)(t), te€[t,]1]
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Composite Hermite spline

Define Hy (X, Ty), g < k, to be a composite Hermite spline

_f HyX,Tw)(@), te[0,t]
Ho (X, Tn) = { Hp(X,T)(t), te€[t,]1]

—e

Examples:
L]
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Composite Hermite spline

Define Hy (X, Ty), g < k, to be a composite Hermite spline

HQ(X7TH)(t)7 te [07 tl]

Ho (X, Tn) = { Hp(X,T)(t), te€[t,]1]

Examples:
e Hip: (piecewise linear interpolator)




Composite Hermite spline

Define Hy (X, Ty), g < k, to be a composite Hermite spline

HQ(X7TH)(t)7 te [07 tl]

Ho (X, Tn) = { Hp(X,T)(t), te€[t,]1]

Examples:
e Hi,: (piecewise linear interpolator)
e Hi3




quasi Regular Sequences

We consider quasi regular sequences (qRS) of sampling designs
{T. = T (h)} generated by a density function h(-) via

where h(-) is continuous for ¢ € (0,1] and if A(-) is unbounded in ¢ = 0, then
h(t) = 400 as t — +0. We denote this property of {1} by: {T,.} is
qRS(h).



Regularly varying function

Recall that a positive function f(-) is called regularly varying (on the
right) at the origin with index p, if for any A > 0,

f(Az)
f(x)

and denote this property by f € %,(0+). A natural example of such
function is a power function, i.e., f(z) = 2% € Z,(0O+). Moreover we say
that g € Z,(r(-),0+) if there exists r(z) > g(x),x € [0, 1] such that

r € %,(0+).

— X asz — 0+,



Previous Results

¢ (Seleznjev, Buslaev 1999)
Optimal approximation rate for linear methods for X € €>[0,1] is
—(l+a)
n

e (Seleznjev, 2000)
Results on Hermite spline approximation when X € #"*([0,1], ¢(-))
and regular sequences of sampling designs are used

X — Ho (X, To)|| ~n~ ") asn — 00, m<k.



Problem formulation

We have a process which I-th derivative is a-Hélder on [0, 1].
Can we get the approximation rate better than n~(+)?
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Let us define: H(t) = fot h(v)dv, G(s) = H™'(s), and g(s) = G'(s),
t,s €[0,1].



Let us define: H(t) = fot h(v)dv, G(s) = H™'(s), and g(s) = G'(s),
t,s €[0,1].

Let X € C4([0,1], M) N CB™?((0,1],¢(-), V(-)). We formulate the following
condition for a local Holder function V' and a sequence generating density h:
(C) let g € Zt(r(-),0+), where
r(s) = o(s(erB)/(HaH/p)*l) as s — 0; (2)
if p= oo, then V(t)2r(H(t))™*? = 0 as t — 0;

if 1 <p < oo and, additionally, V(G(-))*'? € Z*(R(-),0+), then
R(H))r(H(#)™* € L,[0,b] for some b > 0.



Optimal rate recovery

Theorem

Let X € C*([0,1], M) N CB™P((0,1],¢(-), V(-), | + a < m + B, with the
mean f € C™°([0,1],C), B < 8 < 1, be interpolated by a composite Hermite
spline Hq (X, Ty), | < q, m <k, where T,, is a qRS(h). Let for the density
h and the local Holder function V, the condition (C) hold. Then

lim 0PN X — Hyn (X, T)||p = 720 ||/ 2R )|, > 0. (3)



Example

X(t) = B(\/1), t € 0,1], where B(t), t € [0,1], is a fractional Brownian
motion with Hurst parameter H = 0.8. Then

Xe Co,0.4([0’ 1], 1)n CBO’O'S((O, 1], ¢(-), V (),

where c(t) = V(t) = (4t)7%5.



Example

X(t) = B(\/1), t € 0,1], where B(t), t € [0,1], is a fractional Brownian
motion with Hurst parameter H = 0.8. Then

Xe Co,0.4([0’ 1], 1)n CBO’O'S((O, 1], ¢(-), V (),
where c(t) =V (¢t) = (4t)70'8'

We consider the following knot densities

m(t):it%*l, te (0,1, A>0,

say, power densities.



We consider the mean maximal approximation error of the piecewise
linear interpolator, and compare the efficiency of the designs generated by
the power densities with parameters

e A1 =1 (uniform knots distribution)
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Figure: Comparison of the uniform mean errors for the uniform density hy, (-) and
hx, (+) in a log-log scale.

The plot corresponds to the following asymptotic behavior of the
approximation errors:

en(hy,) ~ Cin™%% Cy~0.377,
en(hr,) ~ Co n= 98, Cy ~0.295 as n — oo.

For example, the minimal number of observations needed to obtain the
accuracy 0.01 is approximately 8727 for the equidistant sampling density
hx,, whereas it needs only 69 knots when hy, is used, i.e., Theorem 1 is
applicable.
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Figure: Convergence of the n%-® scaled uniform mean errors to the asymptotic
constant for the generating density ha(-).



Thank you !
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