

Integration of biological knowledge related to gene co-expression

Marie VERBANCK (Agrocampus Ouest / CNRS-UMR6625, France) Sébastien LÊ (Agrocampus Ouest / CNRS-UMR6625, France)

<Experiment>

Chickens (x27): physiological state

- N: fed (ad libitum access to food) (x6)

J16: 16-hour fasting (x5)

J16R5: 16-hour fasting + 5-hour renutrition phase (x7)

The data

J16R16: 16-hour fasting + 16-hour renutrition phase (x9)

- gene expressions (selection)
- fatty acid concentrations (hepatic and plasmatic)

<Experiment>

Chickens (x27): physiological state

- N: fed (ad libitum access to food) (x6)

J16: 16-hour fasting (x5)

J16R5: 16-hour fasting + 5-hour renutrition phase (x7)

The data

J16R16: 16-hour fasting + 16-hour renutrition phase (x9)

- gene expressions (selection)
- fatty acid concentrations (hepatic and plasmatic)

What are the mechanisms implemented in reply to fasting?

The data, the expectations

<Merged data tables>

The data, the expectations

<Merged data tables>

<expectations>

To provide an help on the functional interpretation in an exploratory multivariate analysis framework

Exploratory multivariate analysis framework

Dim 1 (33.66 %)

Exploratory multivariate analysis framework

The multitude of gene expressions is projected onto the the correlation circle <u>uninterpretable</u>

Exploratory multivariate analysis framework

Modular approach

Modules

Modular approach

Modules

Modular approach

Modules

Modules

 $< Z_2, Z_2 >$

Modular approach

 $< Z_1, Z_1 >$

Modules

_ Modules

<MODULES of GENES>

Modular approach

Modules

<MODULES of GENES>

Modular approach

Modules

<MODULES of GENES>

Modular approach

Modular approach

Modules

Description of genes and genes products

Gene Ontology

- Cellular Component

- Molecular Function

L Biological Process (BP)

Genes could be grouped by GO BP terms

GO:0006928, cell motility	GO:0009966, regulation of signal transduction	GO:0051276, chromosome organization and biogenesis
CALD1 EGFR ENPP2 FN1 FPRL2 LSP1 MSN PDPN PLAUR PRSS3 SAA2 SPINT2 TNFRSF12A VEGF WASF1 YARS	CASP1 EDG2 F2R HCLS1 HMOX1 IGFBP3 IQSEC1 LYN MALT1 TCF7L1 TNFAIP3 TRIO VEGF YWHAG YWHAH	CBX6 NUSAP1 PCOLN3 PTTG1 SUV39H1 TCF7L1 TSPYL1

I <th

M: Quantitative data frame

Transpose of the table microarrays x genes, the data being centered by row

<u>G: Contingency table</u>

gij = 1 if the gene i belongs to the process j 0 if not

Construction of a space with a new distance between the genes:

Two genes are close in this space if:

1- They are involved in the same biological processes

2- They are co-expressed

3- They are situated at a similar level of the regulatory network

Construction of a space with a new distance between the genes:

Two genes are close in this space if:

1- They are involved in the same biological processes
 → The two genes must be associated to the same terms
 → Matrix of the terms

2- They are co-expressed

3- They are situated at a similar level of the regulatory network

Construction of a space with a new distance between the genes:

Two genes are close in this space if:

1- They are involved in the same biological processes
 → The two genes must be associated to the same terms
 → Matrix of the terms

- 2- They are co-expressed
- → The two gene expressions must induce the same structure on the individuals
- → Gene expressions data frame
- 3- They are situated at a similar level of the regulatory network

Construction of a space with a new distance between the genes:

Two genes are close in this space if:

1- They are involved in the same biological processes
 → The two genes must be associated to the same terms
 → Matrix of the terms

- 2- They are co-expressed
- → The two gene expressions must induce the same structure on the individuals
- → Gene expressions data frame
- 3- They are situated at a similar level of the regulatory network
- → The number of processes the gene is involved in could determine its level in the network
- \rightarrow Weighting

Construction of a space with a new distance between the genes:

Two genes are close in this space if:

1- They are involved in the same biological processes
 → The two genes must be associated to the same terms
 → Matrix of the terms

- 2- They are co-expressed
- → The two gene expressions must induce the same structure on the individuals
- → Gene expressions data frame
- 3- They are situated at a similar level of the regulatory network
- → The number of processes the gene is involved in could determine its level in the network

 \rightarrow Weighting

Canonical Correspondence Analysis

Our Approach ____

Representation of the genes onto the canonical variables

Our Approach _

Representation of the genes onto the canonical variables

Our Approach.

Representation of the genes onto the canonical variables

Objective: to constitute groups of genes. Classification of the genes according to their coordinates on the canonical variables (150 groups).

Our Approach.

Objective: to constitute groups of genes. Classification of the genes according to their coordinates on the canonical variables (150 groups).

Projection onto the groups' representation

Our Approach.

Objective: to constitute groups of genes. Classification of the genes according to their coordinates on the canonical variables (150 groups).

Projection onto the groups' representation

Neighboring terms

- regulation of catabolic processregulation of actin cytoskeleton organization
- histone modification
- regulation of translationregulation of cell growth

•covalent chromatin modification

Neighboring terms

- regulation of catabolic processregulation of actin cytoskeleton organization
- •histone modification

0.0

0.2

regulation of translationregulation of cell growth

•covalent chromatin modification

0.6

0.8

1.0

0.4

Neighboring terms

- regulation of catabolic processregulation of actin cytoskeleton organization
- histone modification
- regulation of translationregulation of cell growth

•covalent chromatin modification

Neighboring terms

- regulation of catabolic processregulation of actin cytoskeleton organization
- histone modification
- regulation of translationregulation of cell growth

•covalent chromatin modification

0.6

Gene functions

0.0

Calpain-1-cata-protease: <u>Proteolysis</u>
Fructose 1,6 biphosphatase: <u>Neoglucogenesis</u>
UDP glucusyltransferease: <u>Lactose synthesis</u>
3 ketoacyl-coA: <u>Fatty acid oxidation</u>

0.2

0.4

0.6

