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Overview
1. A Factor-model linear classification rule for 

High-Dimensional correlated data

3. Variable selection for problems with “rare” and
“mostly weak” group differences

4. Performance in Micro-Array problems

2.  Asymptotic properties with p  

5. Conclusions and Perspectives
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Problem Statment:

(Y ; X ) Y {0,1} X  p

Σ),(μN~Y|X (Y)p

We want to find a rule that predicts Y given X

Assuming



Bayes rule:

Bayes rule:

(X)fπ argmax Y gggˆ
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How to estimate -1 when p > n and the X correlations 
are important ?
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A Factor-Model Approach

Xi =  (Yi) +  B  fi + i fi  q i  P q  <<  p


 =  B  BT + D

-1 =  D
-1 - D

-1 B [Iq + BT D
-1 B]-1 BTD
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j  D(j) > k0  0
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We will compare empirical linear rules

based on the criterion
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For some parameter space and  estimator satisfying
Lδ

Γ Δ̂

when  d
p

n(p);p



PARIS, 23-28 August 2010

 





































































l',j'

ε

l',j'

2maxmin1

21T

210F(1)(0)

)l',R(j'
(j)Dj

)l',R(j'
a)β(j,aj,

BΔ

k(Σλ)(λk

,cΔΣΔ:θ

c)B,q,,k,k,(kΓΣ,μ,μθ
q

)

Main Result

when

(C1) is satisfied
















 c

K1
K

Φ1(δW
0Fq

0Fq
FqΓ Fqδ

)
)(Σλ
)(Σλ

maxK
0Fqmin

0Fqmax
Γ0Fq qF


2
1

RFct
2
1

RFct0F qqq
ΣΣΣΣ 


p log

n(p);pIt follows that: when

2-1/2-1/2
RFctqDB,

2T
RFctq F||VΣVR||minargDBBΣ 



Asymptotic Properties

Compstat’ 2010

-1/2
RFct

-1/2
RFctq VΣVR

q


High Dimensional
Correlation Adjusted Classification

0 = 1 =1/2



Selecting Predictors

Higher Criticism

2 – Choose a selection cut-off for the score values

(Donoho e Jin 2004)

Given p ordered p-values: 1, ..., p

)()(
)(

p)  /(j-1p  /j
π -j/p

)πHC(j; j
j p

)πHC(j; max*HC jαj 0
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1 - Rank variables acording to two-sample t-scores
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(Donoho e Jin 2009)

In a two-group homokedastic model, with :

- Independent variables

when p 

- Rare “effects” (mean group diferences)

- Weak effects

- p-values derived from two-group t-scores

HC* is asymptotically equivalent to the

optimal selection threshold
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Selecting Predictors

Higher Criticism

- Diagonal classification rules
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Given a sequence of p independent tests with ordered p-values: 1, ..., p

Control of false discovery rates

(Benjamini e Hochberg 1995)

Reject the null hypothesis (H0j) where j  k, with


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(Benjamini e Yekutieli 2001)
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Selecting Predictors

Reject the null hypothesis (H0j) where j  k, with

Given a sequence of p dependent tests with ordered p-values: 1, ..., p
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A selection scheme for problems where effects are rare and
most (but not necessarly all) effects are weak

1 - Include all variables that satisfy Benjamini and Yekutieli’s
criterion

2 - Estimate an “empirical null distributiuon”

4 - Find the HC* threshold from the p-values computed in
step 3
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Selecting Predictors
Expanded Higher Criticism

3 - Compute p-values for the effects of non-selected variables,
based on the null estimated in step 2
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Singh’s Prostate Cancer Data – p=6033;  n=50+52

58   – 134.5 – 4210.0641
(0.0052) 

Factor-based LDA* (q=1)

Rule Error Estimate
(std error)

# Variables kept
(min – median - max)

Fisher’s LDA* 0.2146
(0.0101)

58   – 134.5 – 421 

Naive Bayes* 0.0670
(0.0052) 

58   – 134.5 – 421

Support Vector Machines* 0.0642
(0.0052) 

58   – 134.5 – 421

Nearest Shruken Centroids 0.0838
(0.0063) 

108   – 356 – 1771 

Regularized DA 0.0741
(0.0053) 

82   – 390 – 1201 

Shrunken DA* 0.0650
(0.0051) 

58   – 134.5 – 421

NLDA* 0.0720
(0.0052) 

58   – 134.5 – 421

* After variable selection by the maximum of  FDR (False Discovery Rates) and 
HC (Higher Criticism), both derived from Independence based T-scores. 
The p-values used in the HC computations are derived from empirical Null distributions
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Golubs’s Leukemia Data  –- p = 7 129 ;  n = 47+25

326   – 478 – 7120.0174
(0.0034) 

Factor-based LDA* (q=1)

Rule Error Estimate
(std error)

# Variables kept
(min – median - max)

Fisher’s LDA* 0.2558
(0.0109)

326   – 478 – 712 

Naive Bayes* 0.480
(0.0085) 

326   – 478 – 712

Support Vector Machines* 0.0405
(0.0049) 

326   – 478 – 712

Nearest Shruken Centroids 0.0201
(0.0039) 

703   – 3166 – 7129 

Regularized DA 0.0491
(0.0062) 

12   – 1934 – 7124 

Shrunken DA* 0.0276
(0.0044) 

326   – 478 – 712

NLDA* 0.1510
(0.0085) 

326   – 478 – 712

* After variable selection by the maximum of  FDR (False Discovery Rates) and 
HC (Higher Criticism), both derived from Independence based T-scores. 
The p-values used in the HC computations are derived from empirical Null distributions

Compstat’ 2010

High Dimensional
Correlation Adjusted Classification



PARIS, 23-28 August 2010

Alon’s Colon Data  -– p = 2 000 ;  n = 40+22

3   – 71.5 – 200 0.1746
(0.0098) 

Factor-based LDA* (q=1)

Rule Error Estimate
(std error)

# Variables kept
(min – median - max)

Fisher’s LDA* 0.3285
(0.0143)

3   – 71.5 – 200 

Naive Bayes* 0.2275
(0.0133) 

3   – 71.5 – 200 

Support Vector Machines* 0.1576
(0.0095) 

3   – 71.5 – 200 

Nearest Shruken Centroids 0.1563
(0.0098) 

7   – 39 – 527

Regularized DA 0.2174
(0.0126) 

14   – 425 – 2000 

Shrunken DA* 0.1865
(0.0100) 

3   – 71.5 – 200 

NLDA* 0.2614
(0.0114) 

3   – 71.5 – 200 

* After variable selection by the maximum of  FDR (False Discovery Rates) and 
HC (Higher Criticism), both derived from Independence based T-scores. 
The p-values used in the HC computations are derived from empirical Null distributions
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Conclusions
 A factor-model classification rule, designed for high-
dimensional correlated data, was proposed

 Asymptotic Analysis show that
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 Empirical comparisons sugest that

As p  the new rule can approach a low expected error rate

independence-based rules

unrestricted covariance rules

Often, much lower than

when combined with sensible variable selection schemes

the new rule is highly competitive in MicroArray Applications
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Open Questions
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 Should correlations also be incorporated the selection scheme ?

When and How ?

 How do factor-based rules perform in problems with more than two groups ?

 Do differences in misclassification costs affect the relative standing
of different classification rules ?

…
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