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Rotational indeterminacy

• Infinite number of resultant matrices account equally
for an observed data.

• If X is a solution, then so is any isometric
transformation of X.

• When we represent the isometric transformation by
f(·), the transformed configuration,

X∗ = f(X),

is also a solution.

Kensuke Okada, Shin-ichi Mayekawa( Senshu University, Tokyo Institute of Technology) 2 of 18



Rotational indeterminacy in MCMC

• In classical estimation, rotational indeterminacy is
just a problem of rotating a single solution matrix.

• However, in MCMC each of the (thousands of)
MCMC samples has the freedom of rotation etc.

• Situation is more complex in MCMC.

• Objective:

• To propose a new method of dealing with
rotational indeterminacy in MCMC.

• To empirically compare it with existing methods
by simulation study.
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Existing method A:
Use informative priors on X

• One of the benefits of Bayesian analysis.
• Used in many studies, e.g.,

• DeSarbo, Kim, Wedel & Fong (1998, Europ J
Oper Res).

• DeSarbo, Kim & Fong (1999, J Econometrics).
• However,

• subject to criticisms for its subjectivity.
• prior information may not always be available.
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Existing method B:
Fix some elements of X to be 0

• Reduces degree of freedom.

• Used in Bayesian analysis as well as classical analysis.
• Used in many studies, e.g.,

• Wedel & DeSarbo (1996, J Bus Econ Stat).
• Lopes & West (2004, Stat Sinica).

• However, it is often difficult to decide which element
should be fixed.
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Existing method #1: Eigen analysis

• At each MCMC iteration,

• Centralize X(l).
• Rotate it by x

∗(l)
i = Q(l)′x

(l)
i , where

• x
(l)
i is the i-th row of X(l).

• Q(l) is the matrix whose columns are the
eigenvectors of the covariance matrix
S
(l)
x = 1

n

∑n
i=1(x

(l)
i − x̄(l))′(x

(l)
i − x̄(l)).

• Then use approximate posterior mode of X∗ as an
point estimate.

• Used by Oh & Raftery (2001, JASA)’s Bayesian
MDS.
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Existing method #2 / #3:
Procrustes Analysis (on-line / barch)

• Rotate each X(l) for a target matrix X0 by
Procrustes rotation:
X∗(l) = arg min tr(X0 −Q(l)X(l))′(X0 −Q(l)X(l)).

• Q(l) ranges over the set of rotations, reflections,
and transformations.

• X0: (e.g.) classical MDS solution.
• Both of the followings processings are possible:

• On-line: rotate at each iteration l.
• Batch: rotate after whole sampling process.

• Used e.g. by Hoff et al. (2002, JASA).
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Proposed method: Batch generalized
Procrustes analysis

• Stephens (1997, JRSS B) proposed an idea to deal
with label-switching problem in mixture models.

• Post-process MCMC samples so that marginal
posterior distributions of the parameters are
unimodal and close to normal.

• We apply this idea to rotational indeterminacy
problem.

• We denote l-th centered and normalized MCMC
samples by X(l).
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Proposed method (cont’d)

• We rotate:
X∗(l) = X(l)Q(l)

where Q(l) is the transformation matrix that
minimizes

||X(l)Q(l) − X̄∗||. (1)

toghether with X̄∗(where X∗(l)′X∗(l) : diag).
• This minimization problem is solved by using
generalized Procrustes rotation (Schönemann &
Carroll, 1970, Psychometrika).

• Alternating least squares algorithm is used to
minimize (1).
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Proposed method (cont’d)

1. (1) is consecutively minimized for l = 1, ..., L.

2. X̄
∗
is updated after each step.

• The proposed criterion is equivalent to maximizing
the likelihood of normal distribution,

L =
∑
i

∑
k

∑
l

1

σ
exp

(
−1

2

(x
∗(l)
ik − µik)

2

σ2

)

• This method does not require external target matrix
such as X0 in Method #2, #3.
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Simulation study: Compared methods

• We consider Bayesian MDS model (Oh & Raftery,
2001).

• Following four methods are compared:

1. Eigen analysis (original method).

2. On-line rotation to the target matrix (classical MDS
solution).

3. Batch rotation to the target matrix (classical MDS
solution).

4. Batch generalized Procrustes rotation [proposed
method].
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Bayesian MDS: Model

• ∆ = {δij} : (n× n) Observed dissimilarity matrix

• D = {dij} : (n× n) Distance matrix

• X = {xik} : (n× p) Configuration matrix

• The observed dissimilarity δij follows the truncated
normal distribution,

δij ∼ N(dij, ϕ
2)I(δij > 0),

where

dij =

√∑
k

(xik − xjk)2.
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Bayesian MDS: Priors

• For prior of xi, a multivariate normal distribution is
used:

xi ∼ N(0,Λ). (i = 1, ..., n)

• For prior of ϕ2, an inverse gamma distribution is
used:

ϕ2 ∼ IG(a, b).

• For the elements of Λ = diag(λ1, ..., λp), an inverse
gamma distribution is used:

λk ∼ IG(α, βk). (k = 1, ..., p)
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Simulation study: Settings

• Three noise variance conditions: ϕ2
0 = 0.52, 0.92 and

1.22.
• Two sizes of X conditions: (12× 2) and (18× 3)
• 200 artificial datasets were created from the normal
distribution,

X ∼ N(0, I).

• Distance matrix D is calculated from X.
• Noise is introduced,

δij ∼ N(dij, ϕ
2
0),

to generate “observed” dataset ∆ = {δij}.
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Simulation study: Settings

• Hyperpriors and initial values were set following Oh
& Raftery (2001).

• 10,000 MCMC samples were used for estimation
after 3,000 burn-in.

• For Method #1, approximate mode is used as an
point estimate. For other methods, posterior means
are used as point estimates.

• As an evaluation measure, MSE was calculated for
each point estimation after centering and Procrustes
rotation to the true configuration.
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Simulation study: Results

• Mean of MSEs (X: 12× 2)
Method #1 Method #2 Method #3 Proposed

λ0 = 0.52 1.845 1.522 1.503 1.451
λ0 = 0.92 6.904 5.184 5.200 5.099
λ0 = 1.22 11.541 8.218 8.265 7.918

• Mean of MSEs (X: 18× 3)
Method #1 Method #2 Method #3 Proposed

λ0 = 0.52 5.196 3.872 3.806 3.766
λ0 = 0.92 16.627 11.568 11.538 11.184
λ0 = 1.22 28.938 18.678 18.896 18.362

• Proposed method performed the best.
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Summary & Discussion

• We proposed a new post-processing approach for
rotational indeterminacy problem in MCMC
estimation.

• Proposed method best recovered the original
configuration in simulation study.

• The proposed method should also be applicable to
other models with rotational indeterminacy.

• Further studies on the related models are desired.
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Thank you very much for your patience.
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