

Institut de Statistique, Biostatistique et Sciences Actuarielles

Functional Estimation in Systems Defined by Differential Equation using Bayesian Smoothing Methods

19th International Conference on Computational Statistics

August 24th 2010

Pharmacokinetics on theophylline

Figure 1 - Serum concentrations of the anti-asthmatic drug theophylline

Data for the **kinetics** of the anti-asthmatic drug **theophylline**.

12 subjects were given oral doses of theophylline.Serum concentrations were measured at 11 timepoints over 25 hours for each subject.

Pharmacokinetics on theophylline

Figure 1 - Serum concentrations of the anti-asthmatic drug theophylline

Differential equations for the two compartments model:

$$\begin{cases} \frac{dQ_a(t)}{dt} &= -k_a Q_a(t) \\ \frac{dC_e(t)}{dt} &= \frac{k_a}{V} Q_a(t) - k_e C_e(t) \\ Q_a(0) &= D \\ C_e(0) &= 0 \end{cases}$$

Explicit solution of the differential equations system:

$$\begin{cases} Q_a(t) &= De^{-k_a t} \\ C_e(t) &= \frac{D}{V} \frac{k_a}{k_a - k_e} (e^{-k_e t} - e^{-k_a t}) \end{cases}$$

Compstat2010 - August 24th 2010

- Introduce the concept of Bayesian ODE-penalized B-spline method in the case of linear differential equations system:
- Individual case,
- Hierarchical case.

I. Standard Bayesian smoothing approach

- **II.** Hierarchical Bayesian smoothing approach
- III. Illustration
- **IV. Conclusion & further work**

Differential equation and measurement

$$\begin{cases} D\boldsymbol{x}(t) &= f(\boldsymbol{x}(t), \boldsymbol{\theta}) \\ \boldsymbol{x}(0) &= \boldsymbol{x_0} \end{cases}$$

With:

- $(\mathbf{x}(t))^T = (x_1(t), ..., x_d(t))$ the set of *d* state functions and $\mathbf{x_0}$ the set of initial conditions,
- θ the **vector of parameters** involved in the set of differential equations.

A subset \mathcal{J} of the d state functions are observed with **measurement errors** ε_i :

$$y_j = x_j(t) + \varepsilon_j$$

Basis function expansion

$$\widetilde{x}_j(t) = \left(\boldsymbol{B}_j(t) \right)^T \boldsymbol{c}_j$$

With:

- $B_j(t)$ the vector of B-spline basis functions at time t,
- *c_i* the vector of spline coefficients.

Figure 2 – B-spline basis function of order 4 with knots at 0.25, 0.5 and 0.75

Jonathan Jaeger, Philippe Lambert

Penalty

The penalty for the *j*-th equation asses the proximity of the approximation $\tilde{x}_i(t)$ from the solution $x_i(t)$

$$PEN_{j} = \gamma_{j} \int \left(D\tilde{x}_{j}(t) - f_{j}(\tilde{x}(t), \theta) \right)^{2} dt$$
$$PEN = \sum_{j=1}^{d} PEN_{j}$$
$$= c^{T} R(\theta, \gamma) c$$

Where $\boldsymbol{\gamma}^T = (\gamma_1, ..., \gamma_d)$ is the ODE-adhesion parameters vector and $\boldsymbol{c}^T = (\boldsymbol{c}_1^T, ..., \boldsymbol{c}_d^T)$

Fitting criterion

$$J(\boldsymbol{c},\boldsymbol{\theta},\boldsymbol{\tau}|\boldsymbol{\gamma},\boldsymbol{y}) = \sum_{j\in\mathcal{I}} \left\{ \frac{n_j}{2} \log(\tau_j) - \frac{\tau_j}{2} \sum_{k=1}^{n_j} \left(y_{jk} - \tilde{x}_j(t_{jk}) \right)^2 \right\} - \frac{1}{2} PEN$$

J is a trade-off between **goodness-of-fit** and **solving the system of differential equations**.

Compstat2010 - August 24th 2010

Bayesian model

$$\begin{cases} y_{jk} | \boldsymbol{c}_{j}, \tau_{j} \sim \mathcal{N}\left(\left(\boldsymbol{B}_{j}(t_{jk})\right)^{T} \boldsymbol{c}_{j}; \tau_{j}^{-1}\right) & j \in \mathcal{I}, k = 1, \dots, n_{j} \\ \pi(\boldsymbol{c} | \boldsymbol{\theta}, \boldsymbol{\gamma}) \propto \exp\left(-\frac{1}{2} PEN - \frac{1}{2} \{\boldsymbol{c}^{T} \boldsymbol{\Sigma}_{\boldsymbol{c}}^{-1} \boldsymbol{c} - 2\boldsymbol{c}^{T} \boldsymbol{\Sigma}_{\boldsymbol{c}}^{-1} \boldsymbol{\mu}_{\boldsymbol{c}}\}\right) \\ \gamma_{j} \sim \mathcal{G}a\left(a_{\gamma_{j}}; b_{\gamma_{j}}\right) & j = 1, \dots, d \\ \tau_{j} \sim \mathcal{G}a\left(a_{\tau_{j}}; b_{\tau_{j}}\right) & j \in \mathcal{I} \\ \boldsymbol{\theta} \sim \pi(\boldsymbol{\theta}) \end{cases}$$

The second term in $\pi(c|\theta, \gamma)$ expresses **uncertainty** w.r.t. **initial conditions** of the state function.

Constant of normalization for prior distribution of spline coefficients c:

$$(\det(\boldsymbol{M}_1))^{\frac{1}{2}}\exp\left(-\frac{1}{2}\boldsymbol{v}_1^T\boldsymbol{M}_1^{-1}\boldsymbol{v}_1\right)$$

Where:

- $M_1 = M_1(\theta, \gamma) = R(\theta, \gamma) + \Sigma_c^{-1}$
- $v_1 = \Sigma_c^{-1} \mu_c$

Conditional posterior distributions for γ , θ and τ :

Marginalization of the joint posterior distribution w.r.t. the spline coefficients to avoid correlation between ODE parameters chains and spline coefficients chains.

Metropolis-Hastings steps for ODE-adhesion parameters γ_j , j = 1, ..., d, the precision parameters τ_j , $j \in \mathcal{J}$ and for differential equation parameter θ using **adaptive proposals** to reduce the rejection rate.

If necessary, use of **rotation and translation** to avoid correlation between components in $\boldsymbol{\theta}$.

After convergence of MCMC-chains for γ , θ and τ :

If needed, sample directly from the conditional posterior distribution of the spline coefficients *c* using a **multivariate Gaussian distribution**.

I. Standard Bayesian smoothing approach

II. Hierarchical Bayesian smoothing approach

- **III.** Illustration
- **IV. Conclusion & further work**

Differential equation and measurement for the subject i = 1, ..., I

$$\begin{cases} D\boldsymbol{x}_{i}(t) &= f(\boldsymbol{x}_{i}(t), \boldsymbol{\theta}_{i}) \\ \boldsymbol{x}_{i}(0) &= \boldsymbol{x}_{i,0} \end{cases}$$

For each subject *i*, the same subset \mathcal{J} of state functions are observed with **measurement errors** ε_{ij} :

$$y_{ij} = x_{ij}(t) + \varepsilon_{ij}$$

Basis function expansion for the *j* state function of the subject *i*

$$\widetilde{x}_{ij}(t) = \left(\boldsymbol{B}_{ij}(t) \right)^T \boldsymbol{c}_{ij}$$

Penalty

The individual penalty term and the overall penalty term are similar from the standard approach:

$$PEN_{i} = c_{i}^{T} R_{i}(\theta_{i}, \gamma) c_{i}$$

$$PEN = \sum_{i=1}^{I} PEN_{i} = c^{T} R(\theta_{1}, ..., \theta_{I}, \gamma) c$$

Bayesian model

$$\begin{aligned} y_{ijk} | \boldsymbol{c}_{ij}, \tau_j &\sim \mathcal{N}\left(\left(\boldsymbol{B}_{ij}(t_{ijk})\right)^T \boldsymbol{c}_{ij}; \tau_j^{-1}\right) & i = 1, \dots, I \quad j \in \mathcal{J} \quad k = 1, \dots, n_{ij} \\ \pi(\boldsymbol{c}|\boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_I, \boldsymbol{\gamma}) &\propto \exp\left(-\frac{1}{2}PEN - \frac{1}{2}\{\boldsymbol{c}^T\boldsymbol{\Sigma}_{\boldsymbol{c}}^{-1}\boldsymbol{c} - 2\boldsymbol{c}^T\boldsymbol{\Sigma}_{\boldsymbol{c}}^{-1}\boldsymbol{\mu}_{\boldsymbol{c}}\}\right) \\ \boldsymbol{\theta}_i | \boldsymbol{\theta}, \boldsymbol{P}_{\boldsymbol{\theta}} &\sim \mathcal{N}(\boldsymbol{\theta}; \boldsymbol{P}_{\boldsymbol{\theta}}^{-1}) & i = 1, \dots, I \\ \gamma_j &\sim \mathcal{G}a\left(a_{\gamma_j}; b_{\gamma_j}\right) & j = 1, \dots, d \\ \tau_j &\sim \mathcal{G}a\left(a_{\tau_j}; b_{\tau_j}\right) & j \in \mathcal{J} \\ \boldsymbol{P}_{\boldsymbol{\theta}} &\sim \mathcal{N}(\boldsymbol{\mu}; \boldsymbol{\Lambda}^{-1}) \end{aligned}$$

Constant of normalization:

$$(\det(\boldsymbol{M_1}))^{\frac{1}{2}}\exp\left(-\frac{1}{2}\boldsymbol{v_1}^T\boldsymbol{M_1}^{-1}\boldsymbol{v_1}\right)$$

Where $M_1 = R(\theta_1, ..., \theta_I, \gamma) + \Sigma_c^{-1}$ and $v_1 = \Sigma_c^{-1} \mu_c$

Conditional posterior distributions for γ , θ_1 , ..., θ_I , τ , θ and P_{θ}

Marginalization of the joint posterior distribution w.r.t. the spline coefficients to avoid correlation between individual ODE parameters chains and individual spline coefficients chains.

Metropolis-Hastings steps for ODE-adhesion parameters γ_j , j = 1, ..., d, the precision parameters τ_j , $j \in \mathcal{J}$ and for each differential equation parameter θ_i using **adaptive proposals** to reduce the rejection rate.

If necessary, use of **rotations and translations** to avoid correlation between components in each individual parameter θ_i

Gaussian and Wishart distribution for the conditional posterior distribution of the mean population parameter θ and precision parameter P_{θ} of random effects

After convergence of the MCMC-chains for γ , θ_1 , ..., θ_I , τ , θ and P_{θ}

If needed, sample directly from the conditional posterior distribution of the spline coefficients *c* using a multivariate Gaussian distribution.

- I. Standard Bayesian smoothing approach
- **II.** Hierarchical Bayesian smoothing approach

III. Illustration

IV. Conclusion & further work

Two compartments model Traces & histograms Graphs

concentration

Figure 3 - Serum concentrations of the anti-asthmatic drug theophylline

Differential equation:

$$\begin{cases} \frac{dQ_a(t)}{dt} &= -k_a Q_a(t) \\ \frac{dC_e(t)}{dt} &= \frac{k_a}{V} Q_a(t) - k_e C_e(t) \\ Q_a(0) &= D \\ C_e(0) &= 0 \end{cases}$$

Data distribution, parameterization and random effects:

Additive Gaussian error measurements. Log-parameterization for the PK parameters. Gaussian random effects on the log-PK parameters.

Two compartments model Traces & histograms Graphs

Figure 4 - Traces and histograms for $\log_{10}(\gamma_1)$, $\log_{10}(\gamma_2)$ and $\log_{10}(\tau_e)$

0

-1.0

-0.9

-0.8

log(V)

-0.7

Index

6000

8000

10000

Figure 5 - Traces and histograms for $log(k_a)$, $log(k_e)$ and log(V).

-1.0

0

2000

4000

-0.6

-0.5

Compstat2010 - August 24th 2010

Standard Bayesian smoothing approach Hierarchical Bayesian smoothing approach Illustration

Two compartments model Traces & histograms **Graphs**

(c): Credibility interval for the posterior predictive distribution of $C_{e,2}(t)$ (subject #2).

Compstat2010 - August 24th 2010

Jonathan Jaeger, Philippe Lambert

- I. Standard Bayesian smoothing approach
- **II.** Hierarchical Bayesian smoothing approach
- **III.** Illustration
- **IV.** Conclusion & further work

Conclusion

- **Powerful tool** that overcomes solving the DE using a numerical method,
- **Convenient implementation** of the Bayesian generalized profiling estimation for DE,
- Simple method to include **prior information** about DE parameters,
- Possibility to express uncertainty with respect to initial conditions,
- Hierarchical part only a **simple generalization** of the standard approach

Further work

- Consider other data distributions,
- Generalize this method to nonlinear differential equations,
- **Optimal design** for the data collection,
- Differential equation model with **lagged effects** e.g. $Dx(t) = f(x(t \delta_1), u(t \delta_2), \theta)$.

- [1] Berry S.M., Carroll R.J. and Ruppert D., Bayesian smoothing and regression splines for measurement error problems, Journal of the American Statistical Association, 97:160-169 (2002)
- [2] Poyton A.A, Varziri M.S., McAuley K.B., McLellan P.J. and Ramsay J.O., Parameter estimation in continuous-time dynamic models using principal differential analysis, Computers and Chemical Engineering, 30:698-708 (2006)
- [3] Ramsay J.O., Hooker G., Campbell D. and Cao J., Parameter estimation for differential equations: a generalized smoothing approach, Journal of the Royal Statistical Society, Series B, 69:741-796 (2007)
- [4] Campbell D., Bayesian collocation tempering and generalized profiling for estimation of parameters from differential equation models, PhD Thesis (2007)
- [5] Cai B., Meyer R and Perron F., Metropolis-Hastings algorithms with adaptive proposals, Statistics and Computing, 18:421-433 (2008)
- [6] Lambert P., Archimedean copula estimation using Bayesian splines smoothing techniques, Computational Statistics & Data Analysis, **51**:6307-6320 (2007)

Definition

B-spline basis function defined using:

- order p,
- m inner knots at $\tau_1 \leq \cdots \leq \tau_m$,
- p-multiple knots au_0 and au_{m+1} ,
- **Recursive definition** for each function $B_k(t, p)$.

Properties

- $B_k(t, p)$ is a **piecewise polynomial** of degree p 1,
- Derivatives up to order p-2 are continuous,
- **Sum** of all non-zero basis function is **1**,
- Number of basis function is K = m + p.

	2.5% quantile	Mean	Median	97.5% quantile
$log_{10}(\gamma_1)$	6.3824	7.7267	7.8266	8.5639
$\log_{10}(\gamma_2)$	6.3958	7.7263	7.8091	8.5516
$\log_{10}(\tau_e)$	0.1934	0.3162	0.3181	0.4325
lka	0.0172	0.4761	0.4744	0.9516
$ au_{lk_a}$	0.6393	2.1304	1.9383	4.7129
lk_e	-2.5893	-2.4482	-2.4495	-2.3050
$ au_{lk_e}$	9.8007	94.2905	47.8619	505.1716
lV	-0.8793	-0.7732	-0.7742	-0.6645
$ au_{lV}$	13.9389	45.9627	40.6656	109.9077

Table 1 – Posterior mean, median and credibility intervals for