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Contingency tables

One way contingency tables · · · · · · vectors (hi)

Two way contingency tables · · · · · · matrices (hij)

Three way contingency tables · · · · · · (hijk )

An I × J × K contingency table · · · · · · (hijk ), where 1 ≤ i ≤ I,
1 ≤ j ≤ J, and 1 ≤ k ≤ K . I × J × K contingency tables are 1 − 1
corresponding with functions from [1..I] × [1..J] × [1..K ] to Z≥0.

[1..n] := {1,2, . . . , n}



Motivation

In the analysis of three-way contingency tables we often use
the conditional inference and recently the conditional test of
three way tables has seen some enthusiasm. (cf. Diaconis and
Sturmfels: 1998, Aoki and Takemura: 2003, 2004). In I × J × K
three-way tables the probability function is given by

P{X = x | p} ∼

∏
(i ,j ,k)∈Z

p
xijk

ijk

∏
(i ,j ,k)∈Z

xijk !
,

where Z = {(i , j , k) | 1 ≤ i ≤ I,1 ≤ j ≤ J ,1 ≤ k ≤ K },
x = (xijk ; (i , j , k) ∈ Z) is a family of cell counts, and
p = (pijk ; (i , j , k) ∈ Z) is a family of cell probabilities.



Motivation

In the log-linear model the probability pijk is expressed as

log pijk = μ+ τXi + τYj + τZk + τXY
ij + τYZ

jk + τXZ
ik + τXYZ

ijk

where τXYZ is called three-way interaction effect (Agresti:1996).

The hypothesis to be tested is

H : τXYZ
ijk = 0 for all (i , j , k) ∈ Z

which means that there is no three-way interaction. Under the
hypothesis H the sufficient statistic is the set of two way x-y ,
y-z, x-z marginals and so the conditional probabilities becomes
free from parameters under H.



Motivation

Upon fixing all two way marginals the conditional distribution of
X becomes

PH {X = x | α, β, γ} =

∏
(i ,j ,k)∈Z

1/xijk !

∑
y∈F

∏
(i ,j ,k)∈Z

1/yijk !
,

where F = F (α, β, γ) is the set of three-way contingency tables
with the two-way marginals, and α, β and γ are the x-y , y-z, x-z
marginals of the observed table respectively. The important
thing is that the distribution is of parameter free under H. When
X = x0 was observed, our primary concern is to evaluate the
probability

p-value = PH {T (X ) ≥ T (x0)},
where T is an appropriate test statistic.



Motivation

Let F (α, β, γ) be the set of contingency tables with marginals
α, β, γ and F (H) the set of contingency tables with marginals as
same as those of H.
To evaluate the p-value, we consider about the Monte Carlo
method. The Monte Carlo method estimates F (α, β, γ) by
running a Markov chain. The Markov chain must be irreducible
and in order to generate an irreducible Markov chain we need a
Markov basis B by which all elements in F (α, β, γ) become
mutually reachable by a sequence of elements in B without
violating non-negativity condition.



Sequential conditional test

In the (t − 1)-stage, for a given dataset we obtain a contingency
table Ht−1 and let consider the set F (Ht−1). If one data is
obtained at (it , jt , kt), we have a new contingency table Ht by
combining it with the given dataset and consider the set F (Ht).

Ht(·, j , k) =

⎧⎪⎪⎨⎪⎪⎩
Ht−1(·, j , k) (j , k) � (jt , kt)

Ht−1(·, jt , kt) + 1 (j , k) = (jt , kt)

Ht(i , ·, k) =

⎧⎪⎪⎨⎪⎪⎩
Ht−1(i , ·, k) (i , k) � (it , kt)

Ht−1(it , ·, kt) + 1 (i , k) = (it , kt)

Ht(i , j , ·) =

⎧⎪⎪⎨⎪⎪⎩
Ht−1(i , j , ·) (i , j) � (it , jt)

Ht−1(it , jt , ·) + 1 (i , j) = (it , jt).



Sequential conditional test

In the sequential conditional test, consider

F (H1)→ F (H2)→ · · ·
→ F (Ht−1)→ F (Ht)→ · · · .

Although MCMC test by Metropolos-Hastings’s algorithm is
general in the sequential conditional test, our purpose is to
obtain F (Ht) by using the previous F (Ht−1) and completely
exact probabilities in Fisher’s exact test.



Probabilities – ex 1

Programming by R for 3 × 3 × 3 contingency tables

Step t |Ft | Ours MCMC1 MCMC2

21 12 0.2727273 0.2692 0.2715
22 15 0.3628319 0.3622 0.3628
23 19 0.4824798 0.4952 0.4747
24 25 0.3872708 0.3766 0.3886
25 32 0.1602634 0.1628 0.1618
26 99 0.1176134 0.123 0.1203
27 144 0.05369225 0.0534 0.0503
28 152 0.03016754 0.0322 0.0291

MCMC1: (5 ∗ 103,5 ∗ 102)
Select 5 ∗ 103 tables each of which is got by 5 ∗ 102 skip.

MCMC2: (104,103)



Times – ex 1

Step t |Ft | Ours MCMC1 MCMC2

21 12 0.016 74.464 297.655
22 15 0.033 73.699 302.268
23 19 0.04 75.482 309.072
24 25 0.046 77.406 314.035
25 32 0.089 80.639 326.231
26 99 0.232 88.107 354.706
27 144 0.275 91.275 368.7
28 152 0.138 91.899 372.771

0.869 652.971 2645.438

MCMC1: (5 ∗ 103,5 ∗ 102)
MCMC2: (104,103)



Times – ex 2

Step t |Ft | Ours MCMC1 MCMC2 Prob.

21 4 0.026 66.655 282.103 1.0
31 63 0.045 83.659 337.438 0.2169823
42 253 0.565 96.445 390.396 0.2925166
50 1168 0.132 114.436 464.128 0.4415128
51 1493 1.961 117.895 479.225 0.4047599
60 6663 15.482 141.59 572.312 0.1865068
61 11599 42.942 151.726 617.728 0.1059830
71 15784 0.556 154.862 626.537 0.06565988
72 17285 15.624 154.978 628.453 0.05635573
73 17285 0.727 154.922 626.177 0.04961687

149.51 5921.512 23969.86

MCMC1: (5 ∗ 103,5 ∗ 102)
MCMC2: (104,103)



Times – ex 2

Step t |Ft | Ours MCMC1 MCMC2 Prob.

21 4 0.026 66.655 282.103 1.0
31 63 0.045 83.659 337.438 0.2169823
42 253 0.565 96.445 390.396 0.2925166
50 1168 0.132 114.436 464.128 0.4415128
51 1493 1.961 117.895 479.225 0.4047599
60 6663 15.482 141.59 572.312 0.1865068
61 11599 42.942 151.726 617.728 0.1059830
71 15784 0.556 154.862 626.537 0.06565988
72 17285 15.624 154.978 628.453 0.05635573
73 17285 0.727 154.922 626.177 0.04961687

149.51 5921.512 23969.86

MCMC1: (5 ∗ 103,5 ∗ 102)
MCMC2: (104,103)



Times – ex 2

Step t |Ft | Ours MCMC1 MCMC2 Prob.

21 4 0.026 66.655 282.103 1.0
31 63 0.045 83.659 337.438 0.2169823
42 253 0.565 96.445 390.396 0.2925166
51 1493 1.961 117.895 479.225 0.4047599
60 6663 15.482 141.59 572.312 0.1865068
61 11599 42.942 151.726 617.728 0.1059830
71 15784 0.556 154.862 626.537 0.06565988
72 17285 15.624 154.978 628.453 0.05635573
73 17285 0.727 154.922 626.177 0.04961687

149.51 5921.512 23969.86

MCMC1: (5 ∗ 103,5 ∗ 102)
MCMC2: (104,103)



I × J × K contingency table

I × J ×K contingency table consists of K slices of I × J matrices
consisting non-negative integers.

i\j k = 1 i\j k = 2 i\j k = 3

h111 h121 h131 h112 h122 h132 h113 h123 h133

h211 h221 h231 h212 h222 h232 h213 h223 h233

h311 h321 h331 h312 h322 h332 h313 h323 h333

Table: 3 × 3 × 3 contingency table



Marginals for an I × J × K contingency table

i\j x-y marginal j\k y-z marginal i\k x-z marginal

h11· h12· h13· h·11 h·12 h·13 h1·1 h1·2 h1·3

h21· h22· h23· h·21 h·22 h·23 h2·1 h2·2 h2·3

h31· h32· h33· h·31 h·32 h·33 h3·1 h3·2 h3·3

Table: Marginals of a 3 × 3 × 3 contingency table

hij · =
K∑

s=1

hijs, h·jk =
I∑

s=1

hsjk , and hi ·k =
J∑

s=1

hisk



Markov basis

Find F (Ht) from F (Ht−1).

Put Ft = F (Ht) for any t .

Let φt be a map from Ft−1 to Ft by simply adding 1 in the
(it , jt , kt)-cell.

Remark
A table T of Ft with Tit jt kt > 0 lies in the image of φt .

Thus we may find all tables T of Ft with Tit jt kt = 0.



Markov basis

From now on we assume (it , jt , kt) = (1,1,1) for simplicity. By
the above remark, we need to consider how we can generate
H ∈ Ft with H111 = 0.



Markov basis

From now on we assume (it , jt , kt) = (1,1,1) for simplicity. By
the above remark, we need to consider how we can generate
H ∈ Ft with H111 = 0.

An idea is to use a Markov basis.



Markov basis

From now on we assume (it , jt , kt) = (1,1,1) for simplicity. By
the above remark, we need to consider how we can generate
H ∈ Ft with H111 = 0.

Im(

H111
T111

T

H

For any T ,H ∈ Ft , there is a
sequence of moves F1, . . . ,Fs

of the Markov basis such that

H1 := H + F1 ∈ Ft

H2 := H1 + F2 ∈ Ft
...

Hs := Hs−1 + Fs ∈ Ft

T = Hs



Markov basis

From now on we assume (it , jt , kt) = (1,1,1) for simplicity. By
the above remark, we need to consider how we can generate
H ∈ Ft with H111 = 0.

Im( T

H

We want to find a set of
movesB such that for any T ∈
Ft with T111 = 0, there are
H ∈ φ(Ft−1) and F ∈ B such
that T + F = H.



Markov basis

Markov move is a table with all zero marginal. A set B of
Markov moves is called a Markov basis if for an arbitrary two
contingency tables H and H ′ with the same marginals, say
α, β, γ, there are Markov moves M1, . . . ,Mr (for some r ) in B
such that

H + M1,

(H + M1) + M2,
...

(· · · (H + M1) + · · ·+ Mr−1) + Mr = H ′

are all contingency tables in F (H). A minimal Markov basis has
a minimality property in the set of Markov basis.



r -neighbourhood property

A minimal Markov basis for 3 × 4 × 4 contingency tables as we
use in this talk and it is unique by Aoki-Takemura.



r -neighbourhood property

A minimal Markov basis for 3 × 4 × 4 contingency tables as we
use in this talk and it is unique by Aoki-Takemura.

We fix a minimal Markov basis B. For H and H ′ ∈ Ft , H ′ is said
to be in the r -neighbourhood of H if H ′ is reachable from H by
at most r moves of B. Ft has r -neighbourhood property if for
each H ∈ Ft there is H ′ ∈ Ft with H ′111 > 0 in the
r -neighbourhood of H and there is H ∈ Ft such that the
(r − 1)-neighbourhood of H has no H ′ with H ′111 > 0.



Markov basis for 3 × 4 × 4 contingency tables

Aoki and Takemura determined a minimal Markov basis and
showed it is unique.

Theorem (Aoki-Takemura)
The set of 2224(i1i2, j1j2, k1k2), 2336(i1i2, j1j2j3, k1k2k3),
3236(i1i2i3, j1j2, k1k2k3), 3326(i1i2i3, j1j2j3, k1k2),
2448(i1i2, j1j2j3j4, k1k2k3k4), 3348(i1i2i3, j1j2j3, k1k2k3k4),
3449(i1i2i3, j1j2j3j4, k1k2k3k4), and 34410(i1i2i3, j1j2j3j4, k1k2k3k4)
is a minimal basis for 3 × 4 × 4 contingency tables.

skip Markov basis



Markov move of degree 4

2224(i1i2, j1j2, k1k2) is a move of degree 4 so that the cells of
(i1, j1, k1), (i1, j2, k2), (i2, j1, k2) and (i2, j2, k1) take 1, the cells of
(i1, j1, k2), (i1, j2, k1), (i2, j1, k1) and (i2, j2, k2) take −1, and all the
other cells are zero.

i\j k = k1 k = k2

j = j1 j = j2 j = j1 j = j2

i = i1 1 −1 −1 1

i = i2 −1 1 1 −1

2224(i1i2, j1j2, k1k2) = −2224(i2i1, j1j2, k1k2)



Markov move of degree 6

2336(i1i2, j1j2j3, k1k2k3) is a move of degree 6 so that the cells of
(i1, j1, k1), (i1, j2, k2), (i1, j3, k3), (i2, j1, k2), (i2, j2, k3), and
(i2, j3, k1) take 1, the cells of (i1, j1, k2), (i1, j2, k3), (i1, j3, k1),
(i2, j1, k1), (i2, j2, k2), and (i2, j3, k3) take −1, and all the other
cells are zero.

i\j k = k1 k = k2 k = k3
j = j1 j = j2 j = j3 j = j1 j = j2 j = j3 j = j1 j = j2 j = j3

i = i1 1 −1 −1 1 −1 1

i = i2 −1 1 1 −1 1 −1



Markov move of degree 6

2336(i1i2, j1j2j3, k1k2k3) is a move of degree 6 so that the cells of
(i1, j1, k1), (i1, j2, k2), (i1, j3, k3), (i2, j1, k2), (i2, j2, k3), and
(i2, j3, k1) take 1, the cells of (i1, j1, k2), (i1, j2, k3), (i1, j3, k1),
(i2, j1, k1), (i2, j2, k2), and (i2, j3, k3) take −1, and all the other
cells are zero.

i\j k = k1 k = k2 k = k3
j = j1 j = j2 j = j3 j = j1 j = j2 j = j3 j = j1 j = j2 j = j3

i = i1 1 −1 −1 1
-1

1
−1 1

i = i2 −1 1 1 −1
1

-1
1 −1

2336(i1i2, j1j2j3, k1k2k3) = 2224(i1i2, j1j3, k1k3)+2224(i2i1, j1j2, k2k3)



Markov move of degree 6

3236(i1i2i3, j1j2, k1k2k3) is a move of degree 6 so that the cells of
(i1, j1, k1), (i2, j1, k2), (i3, j1, k3), (i1, j2, k2), (i2, j2, k3), and
(i3, j2, k1) take 1, the cells of (i1, j1, k2), (i2, j1, k3), (i3, j1, k1),
(i1, j2, k1), (i2, j2, k2), and (i3, j2, k3) take −1, and all the other
cells are zero.

j\i k = k1 k = k2 k = k3
i = i1 i = i2 i = i3 i = i1 i = i2 i = i3 i = i1 i = i2 i = i3

j = j1 1 −1 −1 1 −1 1

j = j2 −1 1 1 −1 1 −1

3236(i1i2i3, j1j2, k1k2k3) = 2224(i1i3, j1j2, k1k2)+2224(i2i3, j1j2, k2k3)



Markov move of degree 6
3326(i1i2i3, j1j2j3, k1k2)

i\k i = i1 i = i2 i = i3
j = j1 j = j2 j = j3 j = j1 j = j2 j = j3 j = j1 j = j2 j = j3

k = k1 1 −1 −1 1 −1 1

k = k2 −1 1 1 −1 1 −1



Markov move of degree 6
3326(i1i2i3, j1j2j3, k1k2)

i\k i = i1 i = i2 i = i3
j = j1 j = j2 j = j3 j = j1 j = j2 j = j3 j = j1 j = j2 j = j3

k = k1 1 −1 −1 1 −1 1

k = k2 −1 1 1 −1 1 −1

i\j k = k1 k = k2
j = j1 j = j2 j = j3 j = j1 j = j2 j = j3

i = i1 1 −1 −1 1

i = i2 −1 1 1 −1

i = i3 −1 1 1 −1

3326(i1i2i3, j1j2j3, k1k2) = 2224(i1i2, j1j3, k1k2)+2224(i2i3, j2j3, k1k2)



Markov move of degree 8, 9, 10

2448(i1i2, j1j2j3j4, k1k2k3k4)

= 2224(i1i2, j1j2, k1k2) + 2224(i1i2, j3j4, k3k4)

+ 2224(i1i2, j2j3, k3k1)

3348(i1i2i3, j1j2j3, k1k2k3k4)

= 2224(i1i2, j1j2, k1k2) + 2224(i1i3, j1j2, k2k3)

+ 2224(i2i3, j2j3, k3k4)

3449(i1i2i3, j1j2j3j4, k1k2k3k4)

= 2224(i1i2, j1j4, k1k2) + 2224(i1i3, j1j2, k2k4)

+ 2224(i2i3, j1j4, k2k4) + 2224(i2i3, j3j4, k3k4)

34410(i1i2i3, j1j2j3j4, k1k2k3k4)

= 2224(i1i3, j3j4, k1k2) + 2224(i2i3, j1j2, k3k4)

+ 2224(i1i2, j3j4, k2k3) + 2224(i1i2, j1j4, k3k4)



Known Results

Sturmfels: Markov basis for I × J × 2.

Theorem
The set of I × J × 2 contingency tables has 1-neighbourhood
property.

Aoki-Takemura: Markov basis for 3 × 3 × K .

Theorem

The set of 3 × 3 × 3 contingency tables has 2-neighbourhood
property and the set of 3 × 3 × K contingency tables has
3-neighbourhood property for K ≥ 4.



Known Results I

Theorem
Let N be 3 × 3 × 3 contingency table with N111 = 0, N211 > 0,
N121 > 0, and N112 > 0. N is transmitted to some N ′ with
N ′111 = 1 by at least one of the following Markov moves if and
only if there is a contingency table H which has the same
marginals as N such that H111 > 0.
2224(12,12,12), 2224(12,12,13), 2224(12,13,12),
2224(13,12,12), 2224(13,13,12), 2336(12,132,123),
3236(132,12,123), 3326(132,123,13),
2224(13,13,32) + 2224(12,12,13),
2224(13,32,13) + 2224(12,13,12),
2224(32,13,13) + 2224(13,12,12),
2224(23,23,23) + 2224(12,12,12),
2224(32,13,13) + 2336(13,132,123)



Results

Theorem

The set of 3 × 4 × 4 contingency tables has 3-neighbourhood
property.

Theorem

Suppose that 3 ≤ I ≤ J ≤ K . If the set of I × J × K contingency
tables has r-neighborhood property then r ≥ I − 1, and in
addition if I � J or J � K then r ≥ I.



General theory

Let F u(H) the subset of F (H) consisting H with H111 = u, and
F +(H) the subset of F (H) consisting H with H111> 0. Similarly
let Bu and B+ be the subset consisting M with M111 = u and
M111> 0, respectively, for a Markov basis B. For the
convenience, we assume that the zero table lies in B.

We write F (H), F u(H) and F +(H) by F , F u and F +

respectively for short.



General theory

For I × J × K tables H and H ′ we denote by H ≥ H ′ if Hijk ≥ H ′ijk
for each i , j , k . An operation F = M(1) �M(2) � · · · �M(s) is said to
be applicable for H if all

H + M(1),H + M(1) + M(2), . . . ,H + M(1) + M(2) + · · ·+ M(s)

lie in F (H). For this operation T , we define N(T ) as a table
whose (i , j , k) cell has

max
u=1,...,s

(−
u∑

a=1

M(a)

ijk ,0).

Note that N(F )111 = 0 if M(1),M(2),M(s−1) ∈ F 0 and M(s) ∈ F +.



General theory

The following lemma is one of keys:

Lemma

Let H ∈ F 0, M0
1 , . . . ,M

0
r ∈ B0 and M+

r+1 ∈ B+. For an operation
T = M0

1 � · · · �M0
r �M+

r+1,

T is applicable for H ⇐⇒ H ≥ N(T ).

Lemma
1 Let H be a table accessible to a table H ′ with H ′111 > 0. If

G ≥ H then G is also accessible to a table H ′′ with
H ′′111 > 0.

2 Let H be a table not accessible to any table H ′ with
H ′111 > 0. If G ≤ H then G is also not accessible to any
table H ′′ with H ′′111 > 0.

By this lemma we only need the set of minimal tables for
movability.



General theory

Theorem
The following two claims are equivalent.

1 F has a r-neighbourhood property.
2 F +(N) intersects with the r-neighbourhood of

N := N(M0
1 � · · · �M0

r �M+
r+1) for any M0

1 , . . . ,M
0
r of B0 and

any M+
r+1 of B+, but F +(N̂) does not intersect with the

r -neighbourhood of N̂ := N(M̂0
1 � · · · � M̂0

r−1 � M̂+
r ) for some

M̂0
1 , . . . , M̂

0
r−1 of B0 and some M̂+

r of B+.



Algorithm
Start

Ω = ∅
Yes Finish

No

H ∈ Ω
Ω ←− Ω�{H}

H is subordinate
to a table in N Yes

No

H ≥ N(x), ∃x ∈ M
Yes

No

F+(H) = ∅
Yes

Find a maximal table
T such that H ≤ T
and append T to N

No

Find a move T such that
H ≥ N(T ) and append T
to M and remove tables x
from Ω with x ≥ T



Subordination

Definition
Let H = (Hijk ) and H ′ = (H ′ijk ) be an I × J × K table and an
I × J × K ′ table, respectively, with H111 = H ′111 = 0. We call that
H is K -subordinated to H ′ if there is a partition P = P1, . . . ,PK ′

on {1,2, . . . ,K } such that
1 P1 � · · · � PK ′ = {1,2, . . . ,K },
2 Pk � ∅ for any k , and
3
∑
�∈Pk

Hij� ≤ H ′ijk for any i , j , k .

We define ‘I-subordinated’ and ‘J-subordinated’ similarly.

Note that K ′ ≤ K and that H is K -subordinated to H itself.



Subordination

Example

010 100 310 210
101 203 200 100
020 003 121 120

is K -subordinated to
010 100 620
101 203 400
020 004 341

.



Subordination

Definition
Let H = (Hijk ) and H ′ = (H ′ijk ) be an I × J × K table and an
I′ × J ′ × K ′ table, respectively, with H111 = H ′111 = 0. We call
that H is subordinated to H ′ if there are tables G and G′ such
that H is I-subordinated to G, G is J-subordinated to G′, and G′
is K -subordinated to H ′.

Since the subordination does not depends on the order of I-, J-,
K -subordination we have the following theorem.

Theorem
If H is subordinated to H ′ ∈ F +(H ′) = ∅ then F +(H) = ∅.
This theorem is important for detecting non-movableness by
smaller tables.



Subordination

Theorem (Sumi and Sakata (2009b))

Let H be a 3 × 3 × K contingency table. If F +(H) = ∅ then H is
subordinated to one of the following tables and their permuting
tables for permutations preserving 1 on each coordinate:

0∗ ∗∗∗∗ ∗0 ,
0∗0 ∗∗∗ ∗∗0∗∗∗ ∗0∗ ∗00
0∗∗ 00∗ ∗∗∗ ,

0∗0 ∗∗∗ 0∗∗∗∗∗ ∗0∗ 00∗∗∗0 ∗00 ∗∗∗ ,

(2a) (3a) (3b)

0∗∗ ∗∗∗ 00∗∗∗∗ ∗00 ∗0∗
0∗0 ∗∗0 ∗∗∗ ,

0∗0 ∗∗∗ 0∗∗∗∗0 ∗00 ∗∗∗∗∗∗ ∗0∗ 00∗ ,
0∗∗ ∗∗∗ 0∗0∗∗∗ ∗00 ∗∗0
00∗ ∗0∗ ∗∗∗ .

(3c) (3d) (3e)

Here ∗ means a sufficient large integer which is sufficient to be
maxi ,j ,k Hijk for H.



Subordination

Example

010 100 310 210
101 203 200 100
020 003 121 120

is K -subordinated to
010 100 620
101 203 400
020 004 341

which is a table of type (3a), and thus

F +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
010 100 310 210
101 203 200 100
020 003 121 120

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ = ∅.



Non-movable tables N(1, 1, 1) I

Let N(1,1,1) be the set consisting of tables of type (2a),
(3a)–(3e) and the following 26 tables and their permuting tables
for permutations preserving 1 on each coordinate:

0∗∗0 ∗∗∗∗ 0∗∗∗ 00∗0∗∗∗ ∗ ∗ 00 ∗ 0 00 ∗ 0 0∗∗∗∗0 0 ∗ 00 0 ∗ ∗0 ∗ ∗ ∗∗∗,
0∗∗0 ∗∗∗∗ ∗∗∗0 00∗0∗∗∗∗ ∗00∗ ∗000 ∗0∗0
0∗0∗ 000∗ ∗∗0∗ ∗∗∗∗,

0∗∗∗ ∗∗∗∗ 000∗ 00∗∗∗∗∗0 ∗000 ∗∗∗∗ ∗0∗0
0∗00 ∗∗00 0∗0∗ ∗∗∗∗,

0∗∗0 ∗0∗0 ∗∗∗∗ 00∗0∗∗∗∗ ∗000 ∗00∗ ∗0∗∗
0∗00 ∗∗∗∗ 0∗0∗ 0∗∗∗,

0∗∗0 ∗∗∗∗ 00∗∗ 00∗0∗∗∗∗ ∗00∗ 000∗ ∗0∗∗
0∗00 ∗∗00 ∗∗∗∗ ∗∗∗0,

0∗00 ∗∗∗∗ ∗∗0∗ 0∗0∗∗∗∗∗ 00∗0 ∗0∗∗ 00∗∗∗∗00 ∗0∗0 ∗000 ∗∗∗∗,
0∗00 ∗∗∗∗ 0∗∗0 0∗0∗∗∗∗0 ∗0∗0 00∗0 ∗∗∗∗∗∗0∗ ∗00∗ ∗∗∗∗ 000∗,

0∗00 ∗∗∗∗ ∗∗∗0 ∗∗00∗∗∗∗ 000∗ ∗0∗∗ ∗00∗
0∗∗0 00∗∗ 00∗0 ∗∗∗∗,

0∗00 ∗∗00 ∗∗∗∗ 0∗0∗∗∗∗0 ∗000 ∗0∗0 ∗∗∗∗
0∗∗∗ ∗∗∗∗ 00∗∗ 000∗,

0∗10 ∗∗∗∗ 0∗∗∗ 0∗0∗∗∗∗∗ ∗000 ∗0∗∗ ∗00∗
0∗∗0 ∗0∗0 00∗0 ∗∗∗∗,

0∗10 ∗∗∗∗ 0∗∗∗ 0∗∗0∗∗∗∗ ∗000 ∗0∗∗ ∗0∗0
0∗0∗ ∗00∗ 000∗ ∗∗∗∗,

0∗00 ∗∗∗∗ 0∗∗∗ 0∗0∗∗∗∗∗ ∗000 ∗0∗∗ ∗00∗
1∗∗0 ∗0∗0 00∗0 ∗∗∗∗,

0∗00 ∗∗∗∗ 1∗0∗ 0∗∗∗∗∗∗∗ ∗000 ∗00∗ ∗0∗∗
0∗∗0 ∗0∗0 ∗∗∗∗ 00∗0,

0∗00 ∗∗∗∗ 0∗∗∗ 0∗0∗∗∗∗∗ ∗000 ∗0∗∗ ∗00∗
0∗∗1 ∗0∗0 00∗0 ∗∗∗∗,

0∗00 ∗∗∗∗ 1∗∗∗ 0∗0∗∗∗∗∗ ∗000 ∗0∗∗ ∗00∗
0∗∗0 ∗0∗0 00∗0 ∗∗∗∗,

0∗00 ∗∗∗∗ 0∗∗∗ 0∗0∗∗∗∗∗ ∗000 ∗0∗∗ ∗10∗
0∗∗0 ∗0∗0 00∗0 ∗∗∗∗,

0∗00 ∗∗∗∗ 0∗∗∗ 0∗0∗∗∗∗∗ ∗000 ∗0∗∗ ∗01∗
0∗∗0 ∗0∗0 00∗0 ∗∗∗∗,

0∗00 ∗∗∗∗ 0∗∗∗ 0∗0∗∗∗∗∗ ∗000 ∗1∗∗ ∗00∗
0∗∗0 ∗0∗0 00∗0 ∗∗∗∗,

0∗00 ∗∗∗∗ 0∗∗∗ 0∗0∗∗∗∗∗ ∗000 ∗0∗∗ ∗00∗
0∗∗0 ∗0∗0 10∗0 ∗∗∗∗,

0∗00 ∗∗∗∗ 0∗∗∗ 0∗0∗∗∗∗∗ ∗000 ∗0∗∗ ∗00∗
0∗∗0 ∗0∗0 00∗1 ∗∗∗∗,

0∗00 ∗∗∗∗ 0∗∗∗ 0∗0∗∗∗∗∗ ∗001 ∗0∗∗ ∗00∗
0∗∗0 ∗0∗0 00∗0 ∗∗∗∗,

0∗00 ∗∗∗∗ 0∗∗∗ 0∗0∗∗∗∗∗ ∗000 ∗0∗∗ ∗00∗
0∗∗0 ∗1∗0 00∗0 ∗∗∗∗,

0∗00 ∗∗∗∗ 0∗∗∗ 0∗0∗∗∗∗∗ ∗000 ∗0∗∗ ∗00∗
0∗∗0 ∗0∗1 00∗0 ∗∗∗∗,

0∗00 ∗∗∗∗ 0∗∗∗ 0∗0∗∗∗∗∗ ∗000 ∗0∗∗ ∗00∗
0∗∗0 ∗0∗0 01∗0 ∗∗∗∗,

0∗00 ∗∗∗∗ 0∗∗∗ 0∗1∗∗∗∗∗ ∗000 ∗0∗∗ ∗00∗
0∗∗0 ∗0∗0 00∗0 ∗∗∗∗,

0∗00 ∗∗∗∗ 0∗∗∗ 0∗0∗∗∗∗∗ ∗010 ∗0∗∗ ∗00∗
0∗∗0 ∗0∗0 00∗0 ∗∗∗∗.



Non-movable tables N(1, 1, 1) II

Theorem

A contingency table H is not reachable to a table H ′ with
H ′111 > 0 by Markov moves if and only if H is subordinate of a
table in N(1,1,1).



Movable tables M(1, 1, 1) I

By M = M(1) �M(2) � · · · �M(s) we denote an operation by
transformations plussing M(1), next M(2), step by step, and
finally M(s). Hereafter, the symbol pqrd(· · · ) means a move with
degree d of the minimal Markov basis obtained by Aoki and
Takemura (2003), which is essentially a p × q × r table.
Let M(1,1,1) be the set consisting of the below 105 tables and
their permuting tables for permutations preserving 1 on each
coordinate: skip tables

2224(12,12,12), 2336(12,132,123), 3326(123,213,21),
3236(132,12,123), 3438(312,4321,321), 3438(312,2314,132),
3438(213,1342,213), 3438(123,1234,123), 3348(312,321,3421),
3348(123,123,1243), 3348(312,132,2413), 3348(213,213,1432),
3449(132,3241,2134), 3449(123,1432,1342),
34410(231,3421,1234), 34410(132,3412,1324),
3449(132,2134,3241), 34410(123,2341,2341),



Movable tables M(1, 1, 1) II

34410(132,1324,3412), 34410(231,1243,4321),
2448(12,1342,1234),
2224(13,13,32) � 2224(12,12,13), 2224(32,23,32) � 2224(12,12,12),
2224(13,32,13) � 2224(12,13,12), 2224(23,13,31) � 2224(13,12,12),
2224(13,32,12) � 2336(12,143,123),
2224(13,34,43) � 2336(12,132,124),
2224(32,24,34) � 2336(12,132,124),
2224(13,13,42) � 2336(12,142,143),
2224(32,34,24) � 2336(12,142,123),
2224(13,23,31) � 2336(12,143,124),
2224(23,13,41) � 2336(13,142,123),
2224(13,13,32) � 3326(123,213,31),
2224(13,14,32) � 3326(132,123,13),
2224(12,32,13) � 3326(123,314,21),
2224(12,13,42) � 3236(132,12,143),
2224(12,23,34) � 3236(123,21,214),
2224(13,32,13) � 3236(123,31,214),
2224(13,13,42) � 3438(312,4321,341),



Movable tables M(1, 1, 1) III

2224(12,13,42) � 3438(123,1234,134),
2224(13,12,32) � 3438(312,2314,143),
2224(13,13,42) � 3438(213,1342,413),
2224(13,13,42) � 3438(132,2143,413),
2224(13,13,32) � 3438(312,2314,143),
2224(13,14,42) � 3438(132,2143,413),
2224(12,43,23) � 3438(213,1342,214),
2224(32,14,42) � 3438(213,1342,213),
2224(23,12,31) � 3438(213,2314,142),
2224(12,32,13) � 3438(123,1324,124),
2224(12,14,42) � 3348(132,213,4132),
2224(12,24,43) � 3348(213,213,1342),
2224(23,34,42) � 3348(312,421,4321),
2224(13,23,41) � 3348(312,431,3421),
2224(13,23,41) � 3348(123,134,1234),
2224(13,23,41) � 3348(312,143,2413),
2224(13,32,14) � 3348(213,314,1432),
2224(13,23,21) � 3348(312,143,2413),



Movable tables M(1, 1, 1) IV

2224(12,34,41) � 3348(123,124,1243),
2224(13,23,41) � 34410(231,4231,1243),
2224(13,14,42) � 34410(231,1243,3241),
2224(13,43,34) � 34410(123,2341,2431),
2336(13,124,321) � 2224(12,13,13),
2336(13,123,431) � 2224(12,13,12),
2336(13,134,423) � 2224(12,12,14),
2336(32,423,432) � 2224(12,12,12),
2336(13,234,413) � 2224(12,13,12),
2336(32,143,143) � 2224(13,12,12),
2336(13,123,421) � 2336(12,143,143),
2336(13,123,321) � 2336(12,143,124),
2336(13,134,423) � 3326(123,213,41),
2336(13,134,423) � 3438(132,2143,413),
2336(13,123,421) � 2336(12,142,143),
3438(213,4123,431) � 2224(12,13,12),
3438(213,4123,341) � 3236(132,13,124),
3438(213,4123,421) � 2336(12,143,123),



Movable tables M(1, 1, 1) V

3348(213,134,2143) � 2224(12,12,14),
3348(213,341,3124) � 2224(12,12,14),
3348(213,321,4123) � 2336(12,142,134),
3348(213,341,3124) � 3326(123,214,41),
3449(132,2413,2314) � 2224(13,12,12),
3449(123,4213,3124) � 2224(12,13,12),
3449(123,4123,3214) � 2224(12,12,14),
2224(13,23,31) � 2224(23,34,23) � 2224(12,13,12),
2224(12,14,32) � 2224(23,13,21) � 2224(13,12,13),
2224(13,13,42) � 2224(32,23,34) � 2224(12,12,14),
2224(12,32,13) � 2224(32,12,14) � 2224(13,13,12),
2224(12,13,32) � 2224(13,14,43) � 2224(12,12,14),
2224(12,34,43) � 2224(13,13,42) � 2224(12,12,14),
2224(13,13,42) � 2224(32,42,43) � 2224(12,12,14),
2224(12,24,34) � 2224(32,23,42) � 2224(12,12,12),
2224(12,43,23) � 2224(32,23,42) � 2224(12,12,12),
2224(13,14,43) � 2224(23,13,31) � 2224(13,12,12),
2224(12,43,34) � 2224(13,32,14) � 2224(12,13,12),
2224(12,14,42) � 2224(32,13,13) � 2224(13,12,14),



Movable tables M(1, 1, 1) VI

2224(13,14,42) � 2224(13,32,13) � 2224(12,13,14),
2224(13,32,13) � 2224(23,34,24) � 2224(12,13,12),
2224(13,34,31) � 2224(32,13,14) � 2224(13,12,12),
2224(12,32,13) � 2224(13,34,41) � 2224(12,14,12),
2224(12,23,31) � 2224(23,14,41) � 2224(13,13,12),
2224(12,34,43) � 2224(13,13,42) � 3326(123,213,41),
2224(13,13,42) � 2224(13,23,41) � 2336(12,143,143),
2224(12,14,32) � 2224(13,13,43) � 3326(123,213,41),
2224(13,14,42) � 2224(12,23,31) � 3326(132,134,14),
2224(12,14,42) � 2336(13,123,341) � 2224(12,13,12),
2224(12,32,13) � 2336(13,134,421) � 2224(12,12,14).



Algorithm

The image N(M(1,1,1)) by N gives a necessary condition for a
table H with H111 = 0 to reach to a table H ′ with H ′111 > 0 as
follows.

Theorem

Suppose that Ft is obtained from the previous frame Ft−1 by
adding 1 at the (1,1,1)-cell. Let φ be a map from Ft−1 to Ft by
simply adding 1 at the (1,1,1)-cell. Then

Ft = {φ(H) |H ∈ Ft−1}
∪ {φ(H) − F | H ∈ Ft−1, F ∈ M(1,1,1)}.



Application

For a give marginals α, β, γ, we have an algorithm to obtain
F (α, β, γ).
In particular we decide whether F (α, β, γ) is empty or not.



Conclusion

For a 3 × 4 × 4 contingency table H, we determine the types of
H such that the set F (H) of contingency tables with the
marginals as same as H has no table T with T111 > 0, i.e.
F +(H) = ∅. For given i , j , k , we give a (minimal) Markov basis
B for the set F of 3 × 4 × 4 contingency table with the property
that if F has a table T ′ with T ′ijk = 0 and a table T with
Tijk > 0,then for any table T with Tijk > 0 of F , there is a move
M ∈ B such that T + M ∈ F with (T + M)ijk < Tijk . Go to thanks
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