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Contingency tables

@ One way contingency tables ------ vectors (h;)
@ Two way contingency tables --- - -- matrices (hj)
@ Three way contingency tables --- - -- (hijk)
An | x J x K contingency table ------ (hik), where 1 <i </,

l1<j<Jd,and1 <k <K.IxJxK contingency tablesare 1 -1
corresponding with functions from [1..1] x [1..J] x [1..K] t0 Zso.

[1.n]:={1,2,....,n}



Motivation

In the analysis of three-way contingency tables we often use
the conditional inference and recently the conditional test of
three way tables has seen some enthusiasm. (cf. Diaconis and
Sturmfels: 1998, Aoki and Takemura: 2003, 2004). In 1 xJ x K
three-way tables the probability function is given by

[ P

PIX =X |p} ~ (i,j.k)eZ
l_l lek'
(i,j.k)eZ
where Z ={(i,j,k) |1 <i<1,1<j<J,1<k <K},
X = (Xii; (i,],k) € Z) is a family of cell counts, and
P = (pik; (i,J,k) € Z) is a family of cell probabilities.



Motivation

In the log-linear model the probability pjy is expressed as

X Y z XY YZ XZ XYZ

where 7%Y72 is called three-way interaction effect (Agresti:1996).

The hypothesis to be tested is
H:7» =0 forall (i,j,k)eZ

which means that there is no three-way interaction. Under the
hypothesis H the sufficient statistic is the set of two way x-y,
y-z, X-z marginals and so the conditional probabilities becomes
free from parameters under H.



Motivation

Upon fixing all two way marginals the conditional distribution of

X becomes
l_[ l/Xijk!

(i.i.k)eZ
Pu{X =X la,B,7 =
Z l_l 1/yljk|
yefF (i,j.k)eZ

where ¥ = ¥ (a, 3, v) is the set of three-way contingency tables
with the two-way marginals, and «, g and y are the x-y, y-z, x-z
marginals of the observed table respectively. The important
thing is that the distribution is of parameter free under H. When
X = Xo was observed, our primary concern is to evaluate the
probability

p-value = Py{T (X) > T(xo)},

where T is an appropriate test statistic.



Motivation

Let ¥ (a,B,y) be the set of contingency tables with marginals
a,pB,y and ¥ (H) the set of contingency tables with marginals as
same as those of H.

To evaluate the p-value, we consider about the Monte Carlo
method. The Monte Carlo method estimates ¥ («,3,y) by
running a Markov chain. The Markov chain must be irreducible
and in order to generate an irreducible Markov chain we need a
Markov basis 8 by which all elements in ¥ («,8,y) become
mutually reachable by a sequence of elements in 8 without
violating non-negativity condition.



Sequential conditional test

In the (t — 1)-stage, for a given dataset we obtain a contingency
table H;_; and let consider the set #(H;_1). If one data is
obtained at (i, Ji, ki), we have a new contingency table H; by
combining it with the given dataset and consider the set #(H;).

H ( i k) _ Ht—l("j’k) (J’k) # (jt,kt)

s Ht—l("jt’kt) +1 (J k) = (jt, kt)

H (I . k) _ Htfl(i,', k) (I,k) * (it,kt)

A He_1(it, - ke) + 1 (i, k) = (it, ke)
M) = {Ht_l(i,j, ) (i) # (ie. )
T Healioie) + 10 (b0) = (e de)



Sequential conditional test

In the sequential conditional test, consider

T (Hy) = 7 (Hz) > -
— F(Hi1) > F(H) > .

Although MCMC test by Metropolos-Hastings’s algorithm is
general in the sequential conditional test, our purpose is to
obtain # (Ht) by using the previous #(H;_1) and completely
exact probabilities in Fisher’s exact test.



Probabilities — ex 1

Programming by R for 3 x 3 x 3 contingency tables

Stept |7 | Ours | MCMC1 | MCMC2

21 12 || 0.2727273 0.2692 | 0.2715
22 15 || 0.3628319 0.3622 | 0.3628
23 19 || 0.4824798 0.4952 | 0.4747
24 25 || 0.3872708 0.3766 | 0.3886
25 32 || 0.1602634 0.1628 | 0.1618
26 99 || 0.1176134 0.123 0.1203
27 144 | 0.05369225 || 0.0534 | 0.0503
28 152 | 0.03016754 || 0.0322 | 0.0291

MCMC1: (5 = 10%,5 % 10?)
Select 5 = 103 tables each of which is got by 5 = 102 skip.
MCMC2: (10%,10°)



Times —ex 1

Stept | |71l | Ours || MCMCL | MCMC2

21 12 | 0.016 || 74.464 | 297.655
22 15 | 0.033 || 73.699 | 302.268
23 19 | 0.04 75.482 | 309.072
24 25 || 0.046 || 77.406 | 314.035
25 32 || 0.089 || 80.639 | 326.231
26 99 || 0.232 || 88.107 | 354.706
27 144 | 0.275 || 91.275 | 368.7

28 152 | 0.138 || 91.899 | 372.771

0.869 || 652.971 | 2645.438

MCMC1: (5 = 103,5  10?)
MCMC2: (10*,108)




Times —ex 2

Stept | |#l || Ours || MCMC1 | MCMC2 || Prob.

21 4 || 0.026 66.655 282.103 1.0

31 63 || 0.045 83.659 337.438 0.2169823
42 253 || 0.565 96.445 390.396 0.2925166
50 1168 || 0.132 114.436 464.128 0.4415128
51 1493 || 1.961 117.895 479.225 0.4047599
60 6663 || 15.482 || 141.59 572.312 0.1865068
61 11599 || 42.942 || 151.726 617.728 0.1059830
71 15784 || 0.556 154.862 626.537 0.06565988
72 17285 || 15.624 || 154.978 628.453 0.05635573
73 17285 || 0.727 154.922 626.177 0.04961687

149.51 || 5921.512 | 23969.86

MCMC1: (5 = 103,5 % 102)

MCMC2: (10%,10%)




Times —ex 2

Stept | |#l || Ours || MCMC1 | MCMC2 || Prob.

21 4 || 0.026 66.655 282.103 1.0

31 63 || 0.045 83.659 337.438 0.2169823
42 253 || 0.565 96.445 390.396 0.2925166
50 0.132 114.436 464.128 0.4415128
51 117.895 479.225 0.4047599
60 6663 || 15.482 || 141.59 572.312 0.1865068
61 11599 || 42.942 || 151.726 617.728 0.1059830
71 15784 || 0.556 154.862 626.537 0.06565988
72 17285 || 15.624 || 154.978 628.453 0.05635573
73 17285 || 0.727 154.922 626.177 0.04961687

149.51 || 5921.512 | 23969.86

MCMC1: (5 = 103,5 % 102)

MCMC2: (10%,10%)




Times —ex 2

Stept | |#l || Ours || MCMC1 | MCMC2 || Prob.

21 4 || 0.026 66.655 282.103 1.0

31 63 || 0.045 83.659 337.438 0.2169823
42 253 || 0.565 96.445 390.396 0.2925166
51 1493 || 1.961 117.895 479.225 0.4047599
60 6663 || 15.482 || 141.59 572.312 0.1865068
61 11599 || 42.942 || 151.726 617.728 0.1059830
71 15784 || 0.556 154.862 626.537 0.06565988
72 17285 || 15.624 || 154.978 628.453 0.05635573
73 17285 || 0.727 154.922 626.177 0.04961687

149.51 || 5921.512 | 23969.86

MCMC1: (5 = 103,5 % 102)

MCMC2: (10%,10%)




| x J x K contingency table

I xJ x K contingency table consists of K slices of | x J matrices
consisting non-negative integers.

i k=1 i k=2 ij k=3
h111) h121] hizy h112 h122| h132 h113 h123 hi33
h211| h221] h231 h212 h222| h232 h213 h223 h233
h311| h321| 331 h312 h322 has2 h313 h323 hass

Table: 3 x 3 x 3 contingency table



Marginals for an | x J x K contingency table

i\l x-y marginal j\k y-z marginal i\k Xx-z marginal

hi1. | hio. | ha. hii | hayo | has hi1 | hio | hys
ha1. | hoo. | haa. ho1 | hoo | hos ho.1 | hoo | ho3
ha1. | hao. | haa. hai [ haz | has hz.1 | 32 | has

Table: Marginals of a 3 x 3 x 3 contingency table

K

| J
hij. = Z his, hj = Z hsi, and hix = Z hisk
s=1 s=1

s=1



Markov basis

Find 7 (H;) from 7 (H;_1). J

Put 71 = ¥ (H;) for any t.

Let ¢; be a map from F;_; to #; by simply adding 1 in the
(it,jt, kt)-Ce”.

Atable T of #; with T;;, > O lies in the image of ¢;.

Thus we may find all tables T of 7 with Tj;x, = 0.



Markov basis

From now on we assume (i, ji, ki) = (1,1, 1) for simplicity. By
the above remark, we need to consider how we can generate
H e # with Hy1; = 0.



Markov basis

From now on we assume (i, ji, ki) = (1,1, 1) for simplicity. By
the above remark, we need to consider how we can generate
H e # with Hy1; = 0.

An idea is to use a Markov basis. J



Markov basis

From now on we assume (i, ji, ki) = (1,1, 1) for simplicity. By
the above remark, we need to consider how we can generate
H e # with Hy1; = 0.

For any T,H € ¥, there is a
sequence of moves F,...,Fs
of the Markov basis such that

Hi:=H+Fie%
Hy :=Hy +F2 e Fy

=0 HS = HS—l + FS € Tt

H,47 20
m T = Hs



Markov basis

From now on we assume (i, ji, ki) = (1,1, 1) for simplicity. By
the above remark, we need to consider how we can generate

H e # with Hy1; = 0.

Hy 20

Ty =0

We want to find a set of
moves B such thatforany T €
Ft with T111 = 0, there are
H € ¢(Fi-1) and F € B such
that T + F =H.



Markov basis

Markov move is a table with all zero marginal. A set 8B of
Markov moves is called a Markov basis if for an arbitrary two
contingency tables H and H’ with the same marginals, say
a,B,7, there are Markov moves My, ..., M, (for somer)in 8
such that

H+ My,
(H + My) + My,
("'(H+M1)+"'+Mr—1)+Mr:H,

are all contingency tables in #(H). A minimal Markov basis has
a minimality property in the set of Markov basis.



r-neighbourhood property

A minimal Markov basis for 3 x 4 x 4 contingency tables as we

use in this talk and it is unique by Aoki-Takemura.




r-neighbourhood property

A minimal Markov basis for 3 x 4 x 4 contingency tables as we
use in this talk and it is unique by Aoki-Takemura.

We fix a minimal Markov basis 8. For H and H’ € ¢, H’ is said
to be in the r-neighbourhood of H if H” is reachable from H by
at most r moves of B. ¥ has r-neighbourhood property if for
each H € 7 there is H” € #; with H,, > 0 in the
r-neighbourhood of H and there is H € #; such that the

(r — 1)-neighbourhood of H has no H” with H],, > 0.



Markov basis for 3 x 4 x 4 contingency tables

Aoki and Takemura determined a minimal Markov basis and
showed it is unique.

Theorem (Aoki-Takemura)

The set of 2224(i1i2, Jaj2, k1k2), 2336(i1i2, j1j2)3, K1koka),

3235 (i1i2is, j1j2, K1koks), 3326(i1i2iz, j1j2j3, K1k2),

244g(i1i2, j1j2jaja k1koksKs), 334g(i1izis, j1j2)3, K1kokska),

344 (i1i2i3, j1j2jaja, KikoksKs), and 3444¢(i1izis, j1)2]3j4, K1kokaka)
is a minimal basis for 3 x 4 x 4 contingency tables.

» skip Markov basis



Markov move of degree 4

2224(i1i2, j1j2, k1k2) is @ move of degree 4 so that the cells of
(il,jl, kl), (il,jz, kz), (iz,jl, k2) and (iz,jz, kl) take 1, the cells of
(il,jl, kz), (il,jz, kl), (iz,jl, k]_) and (iz,jz, kz) take —1, and all the
other cells are zero.

i\] =kq =k
=1 1= =1 1=l

=i 1| -1 -1 | 1

i=i, | -1 | 1 1 | -1

2224(i1i2, J1j2, Kika) = —2224(i2i1, j1j2, K1k2)



Markov move of degree 6

2336(i1i2, j1j2]3, k1koks) is @ move of degree 6 so that the cells of
(i1, )1, K1), (i1, )2, k2), (i1, )3, Ka), (i2,j1. k2), (i2, )2, ks), and

(iz,jg, k]_) take 1, the cells of (il,jl, kz), (il,jz, k3), (il,jg, k]_),
(i2,]1, K1), (i2,]2,k2), and (iz, j3, k3) take —1, and all the other
cells are zero.




Markov move of degree 6

2336(i1i2, j1j2]3, k1koks) is @ move of degree 6 so that the cells of
(i1.j1. K1), (i1,J2, k2), (i1, )3, Ka), (i2,j1,k2), (i2,]2, ks), and

(iz,jg, kl) take 1, the cells of (il,jl, kz), (il,jz, k3), (il,jg, k]_),
(i2,]1, K1), (i2,]2,k2), and (iz, j3, k3) take —1, and all the other
cells are zero.

233¢(i1i2, j1j2j3, K1koks) = 2224(i1i2, j1j3, K1k3)+2224(i2i1, ]1]2, koKs)



Markov move of degree 6

3235 (i1i2is, j1)2, k1koks) is @ move of degree 6 so that the cells of
(i1,j1, K1), (i2, 1, k2), (i3,])1,K3), (i1, ]2, k2), (i2,]2,Ks), and

(i3,j2, kl) take 1, the cells of (il,jl, kz), (iz,jl, k3), (i3,j1, k]_),
(i1,j2, K1), (i2,j2, k2), and (is, j2, k3) take —1, and all the other
cells are zero.

AV =k =k =k3
i=ip i=ip i=ig i=ip i=ip =i i=ip i=ip i=i3

=i 1 -1 -1 1 -1 1

i =iy -1 1 1 -1 1 -1

323¢(i1i2i3, j1j2, K1koks) = 2224(i1i3, j1j2, K1k2)+2224(izis, J1j2, koK3)



Markov move of degree 6
3326(i1izi3, j1j2j3, K1k2)

i\ =i i=ip i—is
=i =k I=Iis = I=i I=I3 i=h i=i2 1=

=k 1 -1 -1 1 -1 1

=ky -1 1 1 -1 1 -1




Markov move of degree 6
3326(i1i2i3, j1j2)3, K1k2)

i\ i=ip i=ip i=ig
=i =k I=Iis =i =2 i=is =i =2 I=is
=k 1 -1 -1 1 -1 1
=ky -1 1 1 -1 1 -1
i\j =k ) =ka
=l 1=k I=1I3 I=h 1=l =13
i=ip 1 -1 -1 1
=iy -1 1 1 -1
=iz -1 1 1 -1

3326(i1iziz, j1j2)3, K1k2) = 2224(i1iz, j1j3. K1K2)+2224(i2i3, j2j3, K1K2)



Markov move of degree 8, 9, 10

2444g(i1i2, j1j2)3)a, KikoksKa)
= 2224(i1i2, j1j2, K1ka) + 2224(i1i2, j3ja, K3Ka)
+ 2224(i1i2, j2j3, k3ki)
3344g(i1izi3, j1j2j3, K1kaKska)
= 2224(i1i2, j1j2, K1ka) + 2224(izi3, j1j2, Kok3)
+ 2224(i2i3, 23, K3Ka)
3449(i1izi3, j1j2j3ja, K1koksks)
= 2224(i1i2, j1ja, Kaka) + 2224(i1i3, j1j2, k2Ka)
+2224(i2i3, j1ja, koKa) + 2224(i2i3, j3ja, K3Ka)
34410(i1izi3, jij2jaja K1koksKs)
= 2224(i1i3, J3Ja, K1ka) + 2224(i2i3, j1j2, K3Ka)
+2224(i1i2, j3)a, koK3) + 2224(ixiz, jaja, K3Ka)



Known Results

Sturmfels: Markov basis for | x J x 2.

Theorem
The set of | x J x 2 contingency tables has 1-neighbourhood
property.

Aoki-Takemura: Markov basis for 3 x 3 x K.

Theorem

The set of 3 x 3 x 3 contingency tables has 2-neighbourhood
property and the set of 3 x 3 x K contingency tables has
3-neighbourhood property for K > 4.



Known Results |

Theorem

Let N be 3 x 3 x 3 contingency table with N117 = 0, Nog1 > 0,
N127 > 0, and N132 > 0. N is transmitted to some N’ with
Ni,, = 1 by at least one of the following Markov moves if and
only if there is a contingency table H which has the same
marginals as N such that Hy;1 > O.

2224(12,12,12), 2224(12,12,13), 2224(12,13,12),
2224(13,12,12), 2224(13,13,12), 2336(12,132,123),
3234(132,12,123), 3324(132,123,13),

2224(13,13,32) + 2224(12,12,13),

2224(13,32,13) + 2224(12,13,12),
2224(32,13,13) + 2224(13,12,12),
2224(23,23,23) + 2224(12,12,12),
2224(32,13,13) + 2334(13,132,123)

~— — — —



Results

The set of 3 x 4 x 4 contingency tables has 3-neighbourhood
property.

Theorem

Suppose that 3 <1 <J < K. If the set of | xJ x K contingency
tables has r-neighborhood property thenr > 1 -1, and in
additionif 1 #JorJ #K thenr > I.



General theory

Let ¥“(H) the subset of ¥ (H) consisting H with H111 = u, and
F " (H) the subset of F(H) consisting H with Hy1,> 0. Similarly
let 8Y and 8" be the subset consisting M with M1, = u and
M111> O, respectively, for a Markov basis 8. For the
convenience, we assume that the zero table lies in 8.

We write 7(H), FY(H) and ¥+ (H) by 7, 74 and 7+
respectively for short.



General theory

For I xJ x K tables H and H” we denote by H > H” if Hy, > HIJk

for eachi,j, k. An operation F = MM >M@ 5 ...» M) is said to
be applicable for H if all

H+ MO H+MO M@ H MO M@ M)

lie in ¥ (H). For this operation T, we define N(T) as a table
whose (i, ], k) cell has

S mo)

Note that N(F )11 = 0 if M), M3 ME-1) ¢ 0 and M(S) ¢ 7.

.....



General theory

The following lemma is one of keys:
Lemma
LetH e 7%, M?,....M? € 8% and M, | € B". For an operation

0 0 I '
T
—MJ> l>|\/|r>|\/|r 10

T is applicable for H &< H > N(T).

Lemma

O Let H be a table accessible to a table H’ with Hin > 0. If
G > H then G is also accessible to a table H”” with

144
H111 > 0.

@ Let H be a table not accessible to any table H’ with
Hi,; > 0. If G < H then G is also not accessible to any

table H” with HY,, > 0.

By this lemma we only need the set of minimal tables for
movability.



General theory

The following two claims are equivalent.
© 7 has ar-neighbourhood property.

@ 7 (N) intersects with the r-neighbourhood of

N:=NM?>--->M?>MT ) forany M?,...,M? of 8° and

any M’ | of BT, but 7*(N) does not intersect with the

r-neighbourhood of N := N(IWf >eeeb Mf’_l >M") for some
I\A/If, e Iﬁro_l of 89 and some I\’/I\,+ of B+.



HeQ
Q— Q~{H}

H is subordinate
to a table in A

Find a maximal table
T such that H < T
and append T to N/

Find a move T' such that
H > N(T) and append T
to M and remove tables z
from Q with o > T

Algorithm



Subordination

Definition

LetH = (Hjkx) and H" = (H uk) be an | xJ x K table and an

I xJ x K’ table, respectively, with Hy1; = H{,, = 0. We call that
H is K-subordinated to H’ if there is a partition P = Py, ..., Pk

ni{l,2,...,K}such that

9 Plu---HPK, =1{1,2,...,K},

@ Py # o foranyk, and

(3] Z Hije < Hj forany i, j. k.

£ePy

We define ‘I-subordinated’ and ‘J-subordinated’ similarly.

Note that K’ < K and that H is K-subordinated to H itself.



Subordination

010 100 310 210 010 100 620
101 203 200 100 is K-subordinatedto 101 203 400 .
020 003 121 120 020 004 341



Subordination

Definition

LetH = (Hjk) and H" = (Hi}k) be an | xJ x K table and an

I”x J" x K’ table, respectively, with Hy;; = Hj,, = 0. We call
that H is subordinated to H’ if there are tables G and G’ such
that H is I-subordinated to G, G is J-subordinated to G’, and G’
is K-subordinated to H’.

Since the subordination does not depends on the order of |-, J-,
K -subordination we have the following theorem.

Theorem
If H is subordinated to H' € #(H’) = 0 then ¥ (H) = 0.

This theorem is important for detecting non-movableness by
smaller tables.



Subordination

Theorem (Sumi and Sakata (2009b))

Let H be a 3 x 3 x K contingency table. If #(H) = 0 then H is
subordinated to one of the following tables and their permuting
tables for permutations preserving 1 on each coordinate:

0«0 xxx %x0 00 sxx QOxx

(01 *%
: 0 00 , 0x 00x ,
(29) (3a) (3b)

Oxx  xxx 00= 00 %% O=xx Oxx xxx 0«0
w%  x00 *0x% #*%0 %00 %% sxx %00 xx0 .
00 #x0 sxx %% *0x 00 00 #0x  sxx

(30) (3d) (3e)

Here « means a sufficient large integer which is sufficient to be
maxX; j k Hijk for H.



Subordination

Example

010 100 310 210 010 100 620

101 203 200 100 is K-subordinatedto 101 203 400

020 003 121 120 020 004 341
which is a table of type (3a), and thus

010 100 310 210
F+| 101 203 200 100 |=0.
020 003 121 120



Non-movable tables 9t(1,1,1) |

Let 9t(1,1,1) be the set consisting of tables of type (2a),

(38—(3e) and the following 26 tables and their permuting tables

for permutations preserving 1 on each coordinate:

00
HrE ¥

#%0 0
0xx0

otk

0+00
0«00

#x0
0%

0410

stk ok

0xx0
000

stk

0xx0
000

seokok

0xx0
0«00

stk

0xx0
0«00

stk

0#x0
000

otk ok

00

P
#00 *
*000

*0%0
+000

sk

HrE
*0x0
*00%

sk

4ok ke ok
+000
#*0%0

40k %k ok
+000
*0%0

kA
+*000
*1x0

ok ok

+*000
00

O
000 =

x %0 %

ok
%00%
0x0x

00
000

Hokokok

Ok
Qe

00+0

140+
%00

ok ko

Ok
5 Qe

00x0

Qs
5 Qe

1040

O
# Qs

00+0

O
# Qs

00x0

000
0 0xx,

* Hokx

00+0
#0ux
O

0#0x
Aok
Wl

0x0x
*00%
Ak

O
5 Qe

000’

030
#10%
EEE
00
*00%

sk sk

00
00

sk

EEEE

0#x0
Hrk ok

00
0xx0

stk

0+00
0+00

stk

0xx0
010

stk

00+
000

seokk

Osexl
0«00

seokk

0xx0
0«00

ok
0xx0
000
Hk ok

00
000

ko ok

00

sk
00
000+

ok
*00%
#%00

ok ok
000+
00

sk

4ok ke ok
+000
#*0%0

ok
+000
#*0%0

*k Ak
+*000
#0x1

ok

*01
00

]

)
+000

#x0x

00
000+

EEE T

%0
Qe

00«0

O %%
%0

000+

Qs
Qe

00+0

Ok
Qe

00+0

Ok
Qe

00+1

Qs
# 0k

00+0

O
# Qe

00x0

000
%0x0,

okt

00+0
#0ux
Fx%0
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Non-movable tables 9t(1,1,1) Il

Theorem

A contingency table H is not reachable to a table H” with

Hi,, > 0 by Markov moves if and only if H is subordinate of a

table in 9(1,1,1).



Movable tables 9(1,1,1) |

ByM =M®sM®@ »...o M) we denote an operation by
transformations plussing M(Y), next M(2), step by step, and
finally M (%), Hereafter, the symbol pgrq(- - - ) means a move with
degree d of the minimal Markov basis obtained by Aoki and
Takemura (2003), which is essentially a p x g x r table.

Let :M(1,1,1) be the set consisting of the below 105 tables and
their permuting tables for permutations preserving 1 on each
coordinate:

222,(12,12,12), 2336(12,132,123), 3325(123,213,21),
3236(132,12,123), 3435(312,4321,321), 343g(312,2314,132),
3435(213,1342,213), 3435(123,1234,123), 3345(312, 321, 3421),
3345(123,123,1243), 3345(312,132,2413), 3345(213, 213, 1432),
3444(132,3241,2134), 3444(123,1432,1342),
34410(231,3421,1234), 34410(132,3412,1324),
3444(132,2134,3241), 34410(123,2341,2341),



Movable tables 9t(1,1,1) Il

344,0(132, 1324, 3412), 34410(231, 1243, 4321),
2444(12,1342,1234),
222,(13,13,32) » 2224(12,12,13), 2224(32, 23,32) » 222,(12,12,12),
222,(13,32,13) » 2224(12,13,12), 2224(23,13,31) » 222,(13,12,12),
222,4(13,32,12) » 2334(12, 143, 123),
222,4(13,34,43) » 2334(12,132, 124
222,4(32,24,34) » 2334(12,132, 124
222,(13,13,42) » 2334(12, 142, 143
222,(32,34,24) » 233(12,142, 123
222,(13,23,31) » 2335(12, 143, 124
222,4(23,13,41) » 2334(13, 142, 123
222,(13,13,32) » 3324(123, 213,31
222,(13,14,32) » 3325(132, 123,13
222,(12,32,13) » 3326(123,314, 21
222,(12,13,42) » 323(132, 12, 143

)

)

)

222,4(12,23,34) » 3234(123,21, 214
13,32,13) » 3235(123, 31, 214),
13,13, 42) » 3434(312, 4321, 341),

—

222,
2224

P L e L L N N e N L e e N



Movable tables 9i(1, 1, 1) Il

222,
222,
222,
222,
222,
222,
222,
222,
222,

(12,13,42) > 3435(123, 1234, 134),
(
(
(
(
(
(
(
(
222,(
(
(
(
(
(
(
(
(

1
13,12,32) » 3435(312, 2314, 143),
13,13,42) » 3435(213, 1342, 413),
13,13,42) » 3435(132, 2143, 413),
13,13,32) » 3435(312, 2314, 143),
13,14,42) » 3435(132, 2143, 413),
12,43,23) » 3435(213, 1342, 214),
32,14,42) » 3434(213, 1342, 213),
23,12,31) » 3435(213, 2314, 142),
12,32,13) » 3435(123, 1324, 124),

222,4(12,14, 42) » 3345(132, 213, 4132),

222,(1

222,(2

222,(1

222,(1

222,(1

222,(1

222,(1

2,24,43) » 3345(213, 213, 1342),
3,34,42) » 3345(312,421, 4321),
3,23,41) » 3345(312, 431, 3421),
3,23,41) » 3345(123, 134, 1234),
3,23,41) » 3345(312, 143, 2413),
3,32,14) » 3345(213, 314, 1432),
3,23,21) » 3345(312, 143, 2413),



Movable tables 9t(1,1,1) IV

222,(12,34,41) » 3345(123, 124, 1243),
222,(13,23,41) » 34410(231, 4231, 1243),
222,(13,14,42) » 344,((231, 1243, 3241),
222,(13,43,34) » 344,((123, 2341, 2431),
2334(13,124,321) » 2224(12,13,13),
2334(13,123,431) » 2224(12,13,12),
2334(13, 134, 423) » 2224(12,12,14),
2334(32,423,432) » 2224(12,12,12),
2334(13,234,413) » 2224(12,13,12),

(

(

(

(

(

(

(

(

(

2334(13,123,421) » 2334(12, 143, 143),
2334(13,123,321) » 2334(12, 143, 124),
2334(13, 134, 423) » 3326(123, 213, 41),
2334(13,134, 423) » 3435(132, 2143, 413),
2334(13,123,421) » 2336(12, 142, 143),
3435(213,4123,431) » 222,4(12,13,12),
3435(213,4123,341) » 3235(132,13,124),
3434(213,4123,421) » 2334(12, 143,123),

) (
) (
) 2201
2336(32, 143, 143) » 222,4(13,12,12),
) (
) (
) (
) (
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3344(213,134,2143) » 222,(12, 12, 14),
3344(213,341,3124) » 222,(12, 12, 14),
3344(213,321,4123) » 2336(12, 142, 134),
3344(213,341, 3124) » 3326(123, 214, 41),
3444(132,2413,2314) » 222,(13,12,12),
3444(123,4213,3124) » 222,(12,13,12),
3444(123,4123,3214) » 2224(12,12, 14),
222,4(13,23,31) » 2224(23, 34, 23) » 222,
222,4(12,14,32) » 2224(23,13,21) » 222,

(

(

(

(

(

(

(

( 2,13,12),
(

222,(13,13,42) » 2224(32,23,34) » 222,

(

(

(

(

(

(

(

(

(

)

) ) 3,12,13),
) ) 2,12,14),
222,4(12,32,13) » 2224(32,12, 14) » 222,(13, 13, 12),
222,(12,13,32) » 222,(13, 14, 43) » 222,(12,12, 14),
222,4(12,34,43) » 222,(13,13,42) » 222,(12, 12, 14),
222,4(13,13,42) » 2224(32,42,43) » 222,(12, 12, 14),
) 2,12,12),

) 2,12,12),

) 3,12,12),

) 2,13,12),

) )

3,12,14),

222,(12,24,34) » 222,(32,23,42) » 222,

222,4(12,43,23) » 2224(32, 23,42) » 222,

222,4(13,14,43) » 2224(23,13,31) » 222,

222,(12,43,34) » 222,(13,32,14) » 222,
)

(1
(1
(1
(1
(1
(1
(1
(1
(1
(1
(1
2224(12,14,42) > 222,4(32,13,13) » 2224(1



3,14,42) » 222,(13,32,13) » 222,
3,32,13) » 2224(23,34,24) » 222,
> 2224(32,13,14) » 222,
2,32,13)» 222,(13,34,41

Movable tables 9t(1,1,1) VI

12,13,14),
12,13,12),
13,12,12),
)

2,23,31)>2224(23,14,41) > 2224(13,13,12),

2,34,43) » 2224(13,13,42) » 3324(123, 213, 41),
3,13,42) » 222,(13,23,41) » 2334(12, 143, 143),
2,14,32) » 2224(13,13,43) » 3324(123, 213,41
3,14,42) > 222,(12,23,31) » 3324(132, 134, 14),
2,14,42) » 2336(13,123,341) » 222,(12, 13, 12),
2,32,13) » 2336(13,134,421) » 222,(12, 12, 14).

) (
) (
) (
) > 2224(12,14,12),
) (
) (
) (
) (

)
)
),
)
)
)



Algorithm

The image N(9t(1,1,1)) by N gives a necessary condition for a
table H with Hy;; = O to reach to a table H” with H{,, > 0 as
follows.

Theorem

Suppose that ¥; is obtained from the previous frame #;_1 by
adding 1 at the (1,1, 1)-cell. Let ¢ be a map from #;_; to ¥; by
simply adding 1 at the (1, 1, 1)-cell. Then

Fr = {¢(H) H € Fr_1}
U{p(H)—F |H e Fi_1, F e M(1,1,1)).



Application

For a give marginals «, 8, y, we have an algorithm to obtain

F (B, 7).
In particular we decide whether ¥ (a,3,v) is empty or not.



Conclusion

For a 3 x 4 x 4 contingency table H, we determine the types of
H such that the set ¥ (H) of contingency tables with the
marginals as same as H has no table T with T11; > 0, i.e.
F1t(H) = 0. For given i, j,k, we give a (minimal) Markov basis
B for the set ¥ of 3 x 4 x 4 contingency table with the property
that if # has a table T’ with Tijfk = 0 and a table T with

Tik > O,then for any table T with Ty > 0 of 7, there is a move
M e Bsuchthat T + M € ¥ with (T+M)ijk<Tijk-
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