Multiblock Method for Categorical Variables

Application to the study of antibiotic resistance

S. Bougeard¹, E.M. Qannari² & C. Chauvin¹

¹ French agency for food, environmental and occupational health safety (Anses), Department of Epidemiology, Ploufragan, France

² Nantes-Atlantic National College of Veterinary Medicine, Food Science and Engineering (Oniris), Department of Chemometrics and Sensometrics, Nantes, France

19th International Conference on Computational Statistics, Paris, August 22 - 27, 2010

Table of contents

1 Position of the problem

- 2 Methods
 - Categorical multiblock Redundancy Analysis (Cat-mbRA)
 - Alternative methods

3 Case study

- Study of antibiotic resistance
- Relationships between variables
- Risk factors for antibiotic resistance
- Method comparison

4 Conclusions & perspectives

Statistical issues for epidemiological surveys

2. Expectations

- Global optimization criterion with eigensolution,
- Assessement of the risk factors,
- Factorial representation of data.
- \rightarrow **Multiblock modelling** extended to categorical data.

Advantages & limits of usual procedures

- Generalized linear models
 - Well-adapted for categorical variables,
 - Limited number of explanatory variables,
 - Constraints when y consists of more than 2 categories.
- Decision trees, Random Forest
 - Small misclassification errors,
 - Variables sorted in order of magnitude,
 - No regression coefficients.
- Boosting, bagging, SVM
 - Small misclassification errors,
 - No link with explanatory variables.

Statistical issues for epidemiological surveys

2. Expectations

- Global optimization criterion with eigensolution,
- Assessement of the risk factors,
- Factorial representation of data.
- \rightarrow **Multiblock modelling** extended to categorical data.

1. Advantages & limits of usual procedures

- Generalized linear models
 - Well-adapted for categorical variables,
 - Limited number of explanatory variables,
 - Constraints when y consists of more than 2 categories.
- Decision trees, Random Forest
 - Small misclassification errors,
 - Variables sorted in order of magnitude,
 - No regression coefficients.
- Boosting, bagging, SVM
 - Small misclassification errors,
 - No link with explanatory variables.

Statistical issues for epidemiological surveys

2. Expectations

- Global optimization criterion with eigensolution,
- Assessement of the risk factors,
- Factorial representation of data.
- \rightarrow Multiblock modelling extended to categorical data.

1. Advantages & limits of usual procedures

- Generalized linear models
 - Well-adapted for categorical variables,
 - Limited number of explanatory variables,
 - Constraints when y consists of more than 2 categories.
- Decision trees, Random Forest
 - Small misclassification errors,
 - Variables sorted in order of magnitude,
 - No regression coefficients.
- Boosting, bagging, SVM
 - Small misclassification errors,
 - No link with explanatory variables.

21. Cat-mbRA 22. Alternative method

Table of contents

1 Position of the problem

2 Methods

- Categorical multiblock Redundancy Analysis (Cat-mbRA)
- Alternative methods

3 Case study

- Study of antibiotic resistance
- Relationships between variables
- Risk factors for antibiotic resistance
- Method comparison

4 Conclusions & perspectives

21. Cat-mbRA 22. Alternative methods

Categorical multiblock Redundancy Analysis

The latent variables represent the categorical variable coding : $t_k^{(1)} = X_k w_k^{(1)}$, $u^{(1)} = \tilde{Y} v^{(1)}$

 P_{X_k} is the projector onto the subspace spanned by the dummy variables associated with x_k .

Criterion to maximize

$$\sum_{k} cov^{2}(u^{(1)}, t_{k}^{(1)}), \text{ with} \\ ||t_{k}^{(1)}|| = ||v^{(1)}|| = 1$$
$$\sum_{k} ||P_{X_{k}}u^{(1)}||^{2} = v^{(1)} \tilde{Y'} \sum_{k} P_{X_{k}} \tilde{Y}v^{(1)} \text{ with } ||v^{(1)}|| = 1$$

First order solution

 $v^{(1)}$ is the eigenvector of $\sum_{k} \tilde{Y}' P_{X_k} \tilde{Y}$ associated with the largest eigenvalue $\lambda^{(1)} = \sum_{k} ||P_{X_k} u^{(1)}||^2$

anses 🛟

21. Cat-mbRA 22. Alternative methods

Categorical multiblock Redundancy Analysis

The latent variables represent the categorical variable coding : $t_k^{(1)} = X_k w_k^{(1)}$, $u^{(1)} = \tilde{Y} v^{(1)}$

 P_{X_k} is the projector onto the subspace spanned by the dummy variables associated with x_k .

Criterion to maximize

$$\sum_{k} cov^{2}(u^{(1)}, t_{k}^{(1)}), \text{ with} \\ ||t_{k}^{(1)}|| = ||v^{(1)}|| = 1$$
$$\sum_{k} ||P_{X_{k}}u^{(1)}||^{2} = v^{(1)} \tilde{Y}' \sum_{k} P_{X_{k}} \tilde{Y}v^{(1)} \text{ with } ||v^{(1)}|| = 1$$

First order solution

 $v^{(1)}$ is the eigenvector of $\sum_{k} \tilde{Y}' P_{X_k} \tilde{Y}$ associated with the largest eigenvalue $\lambda^{(1)} = \sum_{k} ||P_{X_k} u^{(1)}||^2$

anses 🤇

21. Cat-mbRA 22. Alternative methods

Categorical multiblock Redundancy Analysis

The latent variables represent the categorical variable coding : $t_k^{(1)} = X_k w_k^{(1)}$, $u^{(1)} = \tilde{Y} v^{(1)}$

 P_{X_k} is the projector onto the subspace spanned by the dummy variables associated with x_k .

Criterion to maximize

$$\sum_{k} cov^{2}(u^{(1)}, t_{k}^{(1)}), \text{ with } \\ ||t_{k}^{(1)}|| = ||v^{(1)}|| = 1$$

$$\sum_{k} ||P_{X_{k}}u^{(1)}||^{2} = \\ v^{(1)'} \tilde{Y}' \sum_{k} P_{X_{k}} \tilde{Y}v^{(1)} \text{ with } ||v^{(1)}|| = 1$$

First order solution

 $v^{(1)}$ is the eigenvector of $\sum_{k} \tilde{Y}' P_{X_k} \tilde{Y}$ associated with the largest eigenvalue $\lambda^{(1)} = \sum_{k} ||P_{X_k} u^{(1)}||^2$

21. Cat-mbRA 22. Alternative methods

Categorical multiblock Redundancy Analysis

The latent variables represent the categorical variable coding : $t_k^{(1)} = X_k w_k^{(1)}$, $u^{(1)} = \tilde{Y} v^{(1)}$

 P_{X_k} is the projector onto the subspace spanned by the dummy variables associated with x_k .

Criterion to maximize

$$\sum_{k} cov^{2}(u^{(1)}, t_{k}^{(1)}), \text{ with } \\ ||t_{k}^{(1)}|| = ||v^{(1)}|| = 1$$
$$\sum_{k} ||P_{X_{k}}u^{(1)}||^{2} = v^{(1)'} \tilde{Y}' \sum_{k} P_{X_{k}} \tilde{Y}v^{(1)} \text{ with } ||v^{(1)}|| = 1$$

First order solution

 $v^{(1)}$ is the eigenvector of $\sum_{k} \tilde{Y}' P_{X_k} \tilde{Y}$ associated with the largest eigenvalue $\lambda^{(1)} = \sum_{k} ||P_{X_k} u^{(1)}||^2$

21. Cat-mbRA 22. Alternative methods

Categorical multiblock Redundancy Analysis

The latent variables represent the categorical variable coding : $t_k^{(1)} = X_k w_k^{(1)}$, $u^{(1)} = \tilde{Y} v^{(1)}$

 P_{X_k} is the projector onto the subspace spanned by the dummy variables associated with x_k .

Criterion to maximize

$$\sum_{k} cov^{2}(u^{(1)}, t_{k}^{(1)}), \text{ with } \\ ||t_{k}^{(1)}|| = ||v^{(1)}|| = 1 \\ \sum_{k} ||P_{X_{k}}u^{(1)}||^{2} = \\ v^{(1)'} \tilde{Y}' \sum_{k} P_{X_{k}} \tilde{Y}v^{(1)} \text{ with } ||v^{(1)}|| = 1 \end{cases}$$

First order solution

$$\begin{split} \nu^{(1)} & \text{ is the eigenvector of } \sum_{k} \tilde{Y}' P_{X_{k}} \tilde{Y} \\ \text{ associated with the largest eigenvalue} \\ \lambda^{(1)} &= \sum_{k} ||P_{X_{k}} u^{(1)}||^{2} \end{split}$$

21. Cat-mbRA 22. Alternative methods

Categorical multiblock Redundancy Analysis (Cat-mbRA)

 P_{X_k} is the projector onto the subspace spanned by the dummy variables associated with x_k .

Partial components (t_1, \ldots, t_K)

Projection of $u^{(1)}$ onto each subspace spanned by $X_k \to t_k^{(1)} = \frac{P_{X_k} u^{(1)}}{||P_{X_k} u^{(1)}||}$

Synthesis with a global component t

21. Cat-mbRA 22. Alternative methods

Categorical multiblock Redundancy Analysis (Cat-mbRA)

 P_{X_k} is the projector onto the subspace spanned by the dummy variables associated with x_k .

Partial components (t_1, \ldots, t_K)

Projection of $u^{(1)}$ onto each subspace spanned by $X_k \to t_k^{(1)} = \frac{P_{X_k}u^{(1)}}{||P_{X_k}u^{(1)}||}$

Synthesis with a global component t

t⁽¹⁾ sums up all the partial codings:
$$t^{(1)} = \sum_{k} a_{k}^{(1)} t_{k}^{(1)}$$
 with $\sum_{k} a_{k}^{(1)^{2}} = 1$,
t⁽¹⁾ = $\sum_{k} \frac{||P_{X_{k}} u^{(1)}||}{\sqrt{\sum_{l} ||P_{X_{l}} u^{(1)}||^{2}}} t_{k}^{(1)} = \frac{\sum_{k} P_{X_{k}} u^{(1)}}{\sqrt{\sum_{l} ||P_{X_{l}} u^{(1)}||^{2}}}$

21. Cat-mbRA 22. Alternative methods

Higher order solutions and optimal Cat-mbRA model

Higher order solutions

Aim : Orthogonalised regressions which take into account all the explanatory variables, *i.e.* orthogonal components $(t^{(1)}, \ldots, t^{(H)})$.

 \rightarrow Consider the residuals of the orthogonal projections of (X_1, \ldots, X_K) onto the subspaces spanned by $t^{(1)}, (t^{(1)}, t^{(2)}), \ldots$

Selection of the optimal model

Additional information :

- Confusion matrix,
- ROC (=Receiver Operating Characteristic) curve.

21. Cat-mbRA 22. Alternative methods

Higher order solutions and optimal Cat-mbRA model

Higher order solutions

Aim : Orthogonalised regressions which take into account all the explanatory variables, *i.e.* orthogonal components $(t^{(1)}, \ldots, t^{(H)})$.

 \rightarrow Consider the residuals of the orthogonal projections of (X_1, \ldots, X_K) onto the subspaces spanned by $t^{(1)}, (t^{(1)}, t^{(2)}), \ldots$

Selection of the optimal model

Additional information :

- Confusion matrix,
- ROC (=Receiver Operating Characteristic) curve.

21. Cat-mbRA 22. Alternative methods

Alternative methods for qualitative discrimination

Robust Generalized Linear Model framework

- Ridge logistic regression [Barker & Brown, 2001], principal component logistic regression [Aguilera et al., 2006],
- PLS generalized regression (*e.g.* PLS logistic regression) [Marx, 1996; Bastien *et al.*, 2005].

Factorial analysis framework

- Disqual procedure [Saporta & Niang, 2006],
- Multiple non Symmetrical Correspondence Analysis [Lauro & Balbi, 1999].

Multiblock and Structural Equation Modelling framework

- Categorical extension of GCA-RT, *i.e.* MCA-RT [Kissita, 2003] and of multiblock PLS, *i.e.* MCOI-catPLS [D'Ambra et al., 2002],
- Categorical extension of SEM [Skrondal & Rabe-Hesketh, 2005] and of PLS-PM [Jakobowicz & Derquenne, 2007; Russolillo, 2009].

21. Cat-mbRA 22. Alternative methods

Alternative methods for qualitative discrimination

Robust Generalized Linear Model framework

- Ridge logistic regression [Barker & Brown, 2001], principal component logistic regression [Aguilera et al., 2006],
- PLS generalized regression (*e.g.* PLS logistic regression) [Marx, 1996; Bastien *et al.*, 2005].

Factorial analysis framework

- Disqual procedure [Saporta & Niang, 2006],
- Multiple non Symmetrical Correspondence Analysis [Lauro & Balbi, 1999].

Multiblock and Structural Equation Modelling framework

- Categorical extension of GCA-RT, *i.e.* MCA-RT [Kissita, 2003] and of multiblock PLS, *i.e.* MCOI-catPLS [D'Ambra et al., 2002],
- Categorical extension of SEM [Skrondal & Rabe-Hesketh, 2005] and of PLS-PM [Jakobowicz & Derquenne, 2007; Russolillo, 2009].

21. Cat-mbRA 22. Alternative methods

Alternative methods for qualitative discrimination

Robust Generalized Linear Model framework

- Ridge logistic regression [Barker & Brown, 2001], principal component logistic regression [Aguilera et al., 2006],
- PLS generalized regression (*e.g.* PLS logistic regression) [Marx, 1996; Bastien *et al.*, 2005].

Factorial analysis framework

- Disqual procedure [Saporta & Niang, 2006],
- Multiple non Symmetrical Correspondence Analysis [Lauro & Balbi, 1999].

Multiblock and Structural Equation Modelling framework

- Categorical extension of GCA-RT, *i.e.* MCA-RT [Kissita, 2003] and of multiblock PLS, *i.e.* MCOI-catPLS [D'Ambra et al., 2002],
- Categorical extension of SEM [Skrondal & Rabe-Hesketh, 2005] and of PLS-PM [Jakobowicz & Derquenne, 2007; Russolillo, 2009].

31. Antibiotic resistance

- Relationships between variables
- 33. Risk factors
- 34. Method comparison

Table of contents

1 Position of the problem

2 Methods

- Categorical multiblock Redundancy Analysis (Cat-mbRA)
- Alternative methods

3 Case study

- Study of antibiotic resistance
- Relationships between variables
- Risk factors for antibiotic resistance
- Method comparison

4 Conclusions & perspectives

31. Antibiotic resistance

- 33 Risk factors
- 34. Method comparison

Epidemiological data

Epidemiological survey

- Part of the French antimicrobial resistance monitoring program (1999 2002),
- Study of the relationships between antibiotic consumption and resistance in healthy poultry.
- Screening of *E. coli* for antimicrobial resistances.

Data description

- Dependent variable : resistance to Nalidixic Acid,
- 14 explanatory variables : production type, previous antimicrobial treatments (7 var.), observed co-resistances (6 var.),
- N = 554 broiler chicken flocks.

31. Antibiotic resistance

- Relationships between variable
- 33. Risk factors
- 34. Method comparison

Epidemiological data

Epidemiological survey

- Part of the French antimicrobial resistance monitoring program (1999 2002),
- Study of the relationships between antibiotic consumption and resistance in healthy poultry.
- Screening of *E. coli* for antimicrobial resistances.

Data description

- Dependent variable : resistance to Nalidixic Acid,
- 14 explanatory variables : production type, previous antimicrobial treatments (7 var.), observed co-resistances (6 var.),
- N = 554 broiler chicken flocks.

31. Antibiotic resistance

- Relationships between variable
- 33. Risk factors
- 34. Method comparison

Epidemiological data

Epidemiological survey

- Part of the French antimicrobial resistance monitoring program (1999 2002),
- Study of the relationships between antibiotic consumption and resistance in healthy poultry.
- Screening of *E. coli* for antimicrobial resistances.

Data description

- Dependent variable : resistance to Nalidixic Acid,
- 14 explanatory variables : production type, previous antimicrobial treatments (7 var.), observed co-resistances (6 var.),
- N = 554 broiler chicken flocks.

Highly correlated explanatory variables

1. Position of the problem
 2. Methods
 3. Case study
 4. Conclusions & perspectives
 34. Method comparison

Plot of the variable loadings on the first two latent variables of cat-mbRA

Interpretation

The resistance to Nalidixic Acid (RNAL = 1) is mainly associated with :

- Two other co-resistances (Chloramphenicol and Neomycin),
- Two antimicrobial treatments during rearing (Quinolones and Peptides).

Antibiotic resistance
 Relationships between varia
 Risk factors
 Method comparison

Risk factors for Nalidixic Acid resistance

Results obtained from cat-mbRA with $(h_{opt} = 2)$ latent variables, significant regression corfficients

Explanatory variables	Number of cases	Nalidixic Acid resistance
Treatments during rearing :		
Tetracyclin	153/554 (27.6%)	NS
Beta-lactams	75/554 (13.5%)	NS
Quinolones	93/554 (16.8%)	0.0058 [0.0015-0.0101]
Peptides	48/554 (8.7%)	NS
Sulfonamides	38/554 (6.9%)	NS
Lincomycin	33/554 (6.0%)	NS
Neomycin	26/554 (4.7%)	NS
Observed co-resistances :		
Ampicillin	278/554 (50.2%)	NS
Tetracyclin	462/554 (83.4%)	NS
Trimethoprim	284/554 (51.3%)	NS
Chloramphenicol	86/554 (15.5%)	0.0066 [0.0012-0.0119]
Neomycin	62/554 (11.2%)	0.0094 [0.0037-0.0151]
Streptomycin	297/554 (53.6%)	NS
Production :		
Export	192/554 (34.6%)	NS
Free-range	63/554 (11.4%)	NS
Light	299/554 (54.0%)	NS

- 31. Antibiotic resistance
- 32. Relationships between variables
- 33. Risk factors
- 34. Method comparison

Comparison with alternative methods

Additional information

- Cat-mbRA : good performance due to Se = 96.5%, whereas Sp = 17.7% (fitting ab.),
- Logistic regression : surprising good performance, with Se = 95.7% and Sp = 21.4% (fitting ab.),
- Cat-mbPLS (resp. *Disqual*) : average performance with Se = 61.2% (resp. 56.4%) and Sp = 65.2% (resp. 66.2%) (fitting ab.),
- No real differences between the methods on the ROC curves.

Table of contents

1 Position of the problem

2 Methods

- Categorical multiblock Redundancy Analysis (Cat-mbRA)
- Alternative methods

3 Case study

- Study of antibiotic resistance
- Relationships between variables
- Risk factors for antibiotic resistance
- Method comparison

4 Conclusions & perspectives

Concluding remarks

Conclusion

- Proposition of a new and successful method for qualitative discrimination (categorical multiblock Redundancy Analysis, cat-mbRA),
- Extension in the field of multiblock modelling framework,
- Application to a real epidemiological survey,
- Code programs and interpretation tools developed in Matlab^(R).

Perspectives

- Comparison with other methods (*e.g.* PLS logistic regression, M-NSCA, MCA-RT, ...) [working paper],
- Simulation study to better compare the method performances,
- Extension to the prediction of several categorical variables.

Concluding remarks

Conclusion

- Proposition of a new and successful method for qualitative discrimination (categorical multiblock Redundancy Analysis, cat-mbRA),
- Extension in the field of multiblock modelling framework,
- Application to a real epidemiological survey,
- Code programs and interpretation tools developed in Matlab^(R).

Perspectives

- Comparison with other methods (*e.g.* PLS logistic regression, M-NSCA, MCA-RT, ...) [working paper],
- Simulation study to better compare the method performances,
- Extension to the prediction of several categorical variables.

Multiblock Method for Categorical Variables

Application to the study of antibiotic resistance

S. Bougeard¹, E.M. Qannari² & C. Chauvin¹

¹ French agency for food, environmental and occupational health safety (Anses), Department of Epidemiology, Ploufragan, France

² Nantes-Atlantic National College of Veterinary Medicine, Food Science and Engineering (Oniris), Department of Chemometrics and Sensometrics, Nantes, France

19th International Conference on Computational Statistics, Paris, August 22 - 27, 2010

