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2. Expectations

m Global optimization criterion with
eigensolution,

m Assessement of the risk factors,
m Factorial representation of data.

— Multiblock modelling extended to
categorical data.
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Categorical multiblock Redundancy Analysis
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=Y, covz(u(1)7t,£1)), with
10 = (V]| = 1

m Xy || P u|2 =
v Y7y, Py, V() with [|v()]| = 1

First order solution

v(1) is the eigenvector of ¥ Y'Px, ¥
associated with the largest eigenvalue
MO = £y [|PuD] 2
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Categorical multiblock Redundancy Analysis (Cat-mbRA)
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Higher order solutions and optimal Cat-mbRA model

Higher order solutions

Aim : Orthogonalised regressions which take into account all the explanatory
variables, i.e. orthogonal components (t(1), e, t("’)).

— Consider the residuals of the orthogonal projections of (Xi, ..., Xk) onto the
subspaces spanned by (1), (1) ¢(2)) .
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Higher order solutions

Aim : Orthogonalised regressions which take into account all the explanatory
variables, i.e. orthogonal components (t(1 )., t("’)).

— Consider the residuals of the orthogonal projections of (Xi, ..., Xk) onto the
subspaces spanned by (1), (1) ¢(2)) .

Selection of the optimal model

1. Calibration set
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22. Alternative methods

Alternative methods for qualitative discrimination

Robust Generalized Linear Model framework

m Ridge logistic regression [Barker & Brown, 2001], principal component logistic
regression [Aguilera et al., 2006],

m PLS generalized regression (e.g. PLS logistic regression) [Marx, 1996 ; Bastien et al.,
2005].
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Robust Generalized Linear Model framework

m Ridge logistic regression [Barker & Brown, 2001], principal component logistic
regression [Aguilera et al., 2006],

m PLS generalized regression (e.g. PLS logistic regression) [Marx, 1996 ; Bastien et al.,
2005].

Factorial analysis framework

m Disqual procedure [Saporta & Niang, 2006],
m Multiple non Symmetrical Correspondence Analysis [Lauro & Balbi, 1999].

Multiblock and Structural Equation Modelling framework

m Categorical extension of GCA-RT, i.e. MCA-RT [Kissita, 2003] and of multiblock
PLS, i.e. MCOI-catPLS [D’Ambra et al., 2002],

m Categorical extension of SEM [Skrondal & Rabe-Hesketh, 2005] and of PLS-PM
[Jakobowicz & Derquenne, 2007 ; Russolillo, 2009]. 1ses .‘}
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3. Case study

Epidemiological data
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Epidemiological data

Epidemiological survey

m Part of the French antimicrobial resistance monitoring program (1999 — 2002),

m Study of the relationships between antibiotic consumption and resistance in
healthy poultry.

m Screening of E. coli for antimicrobial resistances.

Data description Highly correlated explanatory variables

Tretracyclin

m Dependent variable : resistance to
Nalidixic Acid,

m 14 explanatory variables :
production type, previous
antimicrobial treatments (7 var.), £ frinconsen
observed co-resistances (6 var.),

m N = 554 broiler chicken flocks. > 1ses ()
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31. Antibiot e
32. Relationships between variables

3. Case study

variable loadings on the first two latent variables of cat-mbRA
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Interpretation

The resistance to Nalidixic Acid (RNAL = 1) is mainly associated with :
m Two other co-resistances (Chloramphenicol and Neomycin),
m Two antimicrobial treatments during rearing (Quinolones and Peptides). rses (3



3. Case study

Risk factors for Nalidixic Acid resistance

Results obtained from cat-mbRA with (ho,; = 2) latent variables, significant regression corfficients

Explanatory variables Number of cases Nalidixic Acid resistance
Treatments during rearing :
Tetracyclin 153/554 (27.6%) NS
Beta-lactams 75/554 (13.5%) NS
93/554 (16.8%) 0.0058 [0.0015-0.0101]
Peptides 48/554 (8.7%) NS
Sulfonamides 38/554 (6.9%) NS
Lincomycin 33/554 (6.0%) NS
Neomycin 26/554 (4.7%) NS
Observed co-resistances :
Ampicillin 278/554 (50.2%) NS
Tetracyclin 462/554 (83.4%) NS
Trimethoprim 284/554 (51.3%) NS
Chloramphenicol 86/554 (1 5.5%) 0.0066 [0.0012-0.0119]
Neomycin 62/554 (11.2%) 0.0094 [0.0037-0.0151]
Streptomycin 297/554 (53.6%) NS
Production :
Export 192/554 (34.6%) NS
Free-range 63/554 (11.4%) NS
Light 299/554 (54.0%) NS anses (3
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34. Method comparison

Comparison with alternative methods
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Additional information

m Cat-mbRA : good performance due to Se = 96.5%, whereas Sp = 17.7% (fitting
ab.),

m Logistic regression : surprising good performance, with Se = 95.7% and
Sp = 21.4% (fitting ab.),
m Cat-mbPLS (resp. Disqual) : average performance with Se = 61.2% (resp.
56.4%) and Sp = 65.2% (resp. 66.2%) (fitting ab.), 1ses LJ

m No real differences between the methods on the ROC curves. 13116
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Concluding remarks

Conclusion

m Proposition of a new and successful method for qualitative discrimination
(categorical multiblock Redundancy Analysis, cat-mbRA),

m Extension in the field of multiblock modelling framework,
m Application to a real epidemiological survey,
m Code programs and interpretation tools developed in Matlab®.

Perspectives
m Comparison with other methods (e.g. PLS logistic regression, M-NSCA,
MCA-RT, ...) [working paper],
m Simulation study to better compare the method performances,

m Extension to the prediction of several categorical variables.
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