Selecting Variables in Two-Group Robust Linear Discriminant Analysis

Stefan Van Aelst and Gert Willems

Department of Applied Mathematics and Computer Science Ghent University, Belgium

COMPSTAT'2010

Linear discriminant analysis setting

- p-dimensional data set
- Group 1: $\mathbf{x}_{11} \dots, \mathbf{x}_{1n_1} \in \Pi_1 \sim F_1 = F_{\mu_1, \Sigma}$
- Group 2: $\mathbf{x}_{21} \dots, \mathbf{x}_{2n_2} \in \Pi_2 \sim F_2 = F_{\mu_2, \Sigma}$
- Common covariance matrix Σ
- $P(X \in \Pi_1) = P(X \in \Pi_2)$
- $d_i^L(\mathbf{x}) = \boldsymbol{\mu}_i^t \Sigma^{-1} \mathbf{x} \frac{1}{2} \boldsymbol{\mu}_i^t \Sigma^{-1} \boldsymbol{\mu}_i; j = 1, 2$

Linear Bayes rule: Classify
$$\mathbf{x} \in \mathbb{R}^p$$
 into Π_1 if

$$d_1^L(\mathbf{x}) > d_2^L(\mathbf{x})$$

Linear discriminant analysis setting

- p-dimensional data set
- Group 1: $\mathbf{x}_{11} \dots, \mathbf{x}_{1n_1} \in \Pi_1 \sim F_1 = F_{\mu_1, \Sigma}$
- Group 2: $\mathbf{x}_{21} \dots, \mathbf{x}_{2n_2} \in \Pi_2 \sim F_2 = F_{\mu_2, \Sigma}$
- Common covariance matrix Σ
- $P(X \in \Pi_1) = P(X \in \Pi_2)$
- $\bullet \ d_j^L(\mathbf{x}) = \boldsymbol{\mu}_j^t \Sigma^{-1} \mathbf{x} \frac{1}{2} \boldsymbol{\mu}_j^t \Sigma^{-1} \boldsymbol{\mu}_j; \ j = 1, 2$

Linear Bayes rule:

Classify $\mathbf{x} \in \mathbb{R}^p$ into Π_1 if

$$d_1^L(\mathbf{x}) > d_2^L(\mathbf{x})$$

and into Π_2 otherwise.

Discriminant coordinate

Direction a that best separates the two populations:

$$\mathbf{a} = \Sigma^{-1}(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)$$

The projection $\mathbf{a}^t \mathbf{x}$ is called the canonical variate or discriminant coordinate

Sample LDA

- Estimate the centers μ_1 and μ_2 and the scatter Σ from the data
- Standard LDA uses the sample means $\bar{\mathbf{x}}_1$ and $\bar{\mathbf{x}}_2$, and the pooled sample covariance matrix

$$S_n = \frac{(n_1 - 1)S_1 + (n_2 - 1)S_2}{n_1 + n_2 - 2}$$

Robust LDA

- Use robust estimators of the centers μ_1 and μ_2 and the common scatter Σ
 - ---> S-estimators
 - → MM-estimators

One-sample S-estimators

- Observations $\{\mathbf{x}_1,\ldots,\mathbf{x}_n\} \subset \mathbb{R}^p$
- $\rho_0: [0,\infty[\to [0,\infty[$ is bounded, increasing and smooth

S-estimates of the location $\widetilde{\mu}_n$ and scatter $\widetilde{\Sigma}_n$ minimize |C| subject to

$$\frac{1}{n} \sum_{i=1}^{n} \rho_0 \left(\left[(\mathbf{x}_i - T)^t C^{-1} (\mathbf{x}_i - T) \right]^{\frac{1}{2}} \right) = b$$

among all $T \in \mathbb{R}^p$ and $C \in PDS(p)$

(Davies 1987, Rousseeuw and Leroy 1987, Lopuhaä 1989)

ρ functions

A popular family of loss functions is the Tukey biweight (bisquare) family of ρ functions:

$$\rho_c(t) = \begin{cases} \frac{t^2}{2} - \frac{t^4}{2c^2} + \frac{t^6}{6c^4} & \text{if } |t| \le c\\ \frac{c^2}{6} & \text{if } |t| \ge c. \end{cases}$$

- The constant c can be tuned for robustness (breakdown point)
- The choice of c also determines the efficiency of the S-estimator
- → Trade-off robustness vs efficiency

Tukey biweight ρ functions

One-sample MM-estimates

Put $\tilde{\sigma}_n = \det(\widetilde{\Sigma}_n)^{1/2p}$, the S-estimate of scale

Then the MM-estimates of the location $\widehat{\mu}_n$ and shape Γ_n minimize

$$\frac{1}{n}\sum_{i=1}^{n}\rho_{1}\left(\left[(\mathbf{x}_{i}-T)^{t}G^{-1}(\mathbf{x}_{i}-T)\right]^{\frac{1}{2}}/\tilde{\sigma}_{n}\right)$$

among all $T \in \mathbb{R}^p$ and $G \in PDS(p)$ for which det(G)=1

(Tatsuoka and Tyler 2000)

ρ functions

- ullet Both ho_0 and ho_1 are taken from the same family
- The constant c in ρ_0 can be tuned for robustness (breakdown point)
- MM-estimator inherits its robustness from the S-scale
- The constant c in ρ_1 can be tuned for efficiency of locations

Tukey biweight ρ functions

Robust two-sample estimates

• Pool the scatter estimates $\widehat{\Sigma}_{1n_1}$ and $\widehat{\Sigma}_{2n_2}$ of both groups:

$$\widehat{\Sigma}_n = \frac{n_1 \widehat{\Sigma}_{1n_1} + n_2 \widehat{\Sigma}_{2n_2}}{n_1 + n_2}$$

 Calculate simultaneous S-estimates of the two locations and the common scatter matrix:

$$egin{aligned} \widehat{m{\mu}}_{1n}, \ \widehat{m{\mu}}_{2n} \ ext{and} \ \widehat{\Sigma}_n \ ext{minimize} \ |C| \ ext{subject to} \end{aligned}$$
 $rac{1}{n_1+n_2} \sum_{j=1}^2 \sum_{i=1}^{n_j}
ho_0 \left(\left[(\mathbf{x}_{ji}-T_j)^t C^{-1} (\mathbf{x}_{ji}-T_j)
ight]^{rac{1}{2}}
ight) = b$

among all $T_1, T_2 \in \mathbb{R}^p$ and $C \in PDS(p)$

(He and Fung 2000)
Similarly, simultaneous MM-estimates can be calculated

Bootstrap inference

- Advantages of bootstrap
 - Few assumptions
 - Wide range of applications
- Bootstrapping robust estimators
 - High computational cost
 - Robustness not guaranteed

Bootstrap inference

- Advantages of bootstrap
 - Few assumptions
 - Wide range of applications
- Bootstrapping robust estimators
 - High computational cost
 - Robustness not guaranteed

Fast and robust bootstrap principle

For each bootstrap sample

- Calculate an approximation for the estimates
- Use the estimating equations
- Fast to compute approximations
- Inherit robustness of initial solution

Fast and robust bootstrap

- Consider estimates that are the solution of a fixed point equation $\widehat{\Theta}_n = \mathbf{g}_n(\widehat{\Theta}_n)$
- For a bootstrap sample $\widehat{\Theta}_n^* = \mathbf{g}_n^*(\widehat{\Theta}_n^*)$ consider the one-step approximation

$$\widehat{\Theta}_n^{1\star} = \mathbf{g}_n^*(\widehat{\Theta}_n)$$

• Take a Taylor expansion about estimands Θ :

$$\widehat{\Theta}_n = \mathbf{g}_n(\Theta) + \nabla \mathbf{g}_n(\Theta)(\widehat{\Theta}_n - \Theta) + O_P(n^{-1})$$

which can be rewritten as:

$$\sqrt{n}(\widehat{\Theta}_n - \Theta) = [\mathbf{I} - \nabla \mathbf{g}_n(\Theta)]^{-1} \sqrt{n} (\mathbf{g}_n(\Theta) - \Theta) + O_P(n^{-1/2})$$

We then obtain

$$\sqrt{n}(\widehat{\Theta}_n^* - \widehat{\Theta}_n) = [\mathbf{I} - \nabla \mathbf{g}_n(\widehat{\Theta}_n)]^{-1} \sqrt{n} (\mathbf{g}_n^*(\widehat{\Theta}_n) - \widehat{\Theta}_n) + O_P(n^{-1/2})$$
which yields the FBB estimate

$$\widehat{\Theta}_{n}^{R\star} = \widehat{\Theta}_{n} + [\mathbf{I} - \nabla \mathbf{g}_{n}(\widehat{\Theta}_{n})]^{-1} (\widehat{\Theta}_{n}^{1\star} - \widehat{\Theta}_{n})$$

Fast and robust bootstrap

- Consider estimates that are the solution of a fixed point equation $\widehat{\Theta}_n = \mathbf{g}_n(\widehat{\Theta}_n)$
- For a bootstrap sample $\widehat{\Theta}_n^* = \mathbf{g}_n^*(\widehat{\Theta}_n^*)$ consider the one-step approximation

$$\widehat{\Theta}_n^{1\star} = \mathbf{g}_n^*(\widehat{\Theta}_n)$$

Take a Taylor expansion about estimands Θ:

$$\widehat{\Theta}_n = \mathbf{g}_n(\Theta) + \nabla \mathbf{g}_n(\Theta)(\widehat{\Theta}_n - \Theta) + O_P(n^{-1})$$

which can be rewritten as:

$$\sqrt{n}(\widehat{\Theta}_n - \Theta) = [\mathbf{I} - \nabla \mathbf{g}_n(\Theta)]^{-1} \sqrt{n} (\mathbf{g}_n(\Theta) - \Theta) + O_P(n^{-1/2})$$

We then obtain

$$\sqrt{n}(\widehat{\Theta}_n^* - \widehat{\Theta}_n) = [\mathbf{I} - \nabla \mathbf{g}_n(\widehat{\Theta}_n)]^{-1} \sqrt{n} (\mathbf{g}_n^*(\widehat{\Theta}_n) - \widehat{\Theta}_n) + O_P(n^{-1/2})$$

which yields the FRB estimate

$$\widehat{\Theta}_{n}^{R\star} = \widehat{\Theta}_{n} + [\mathbf{I} - \nabla \mathbf{g}_{n}(\widehat{\Theta}_{n})]^{-1}(\widehat{\Theta}_{n}^{1\star} - \widehat{\Theta}_{n})$$

Properties of fast robust bootstrap

Computational efficiency: The FRB estimates are solutions of a system of linear equations

Robustness: The FRB estimates use the weights of the MM-estimates at the original sample

Consistency: Under regularity conditions, the FRB distribution of $\widehat{\Theta}_n$ and the sample distribution of $\widehat{\Theta}_n$ converge to the same limiting distribution

Smooth mappings: FRB commutes with smooth functions such as $\mathbf{a} = \Sigma^{-1}(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)$

- Computational efficiency: The FRB estimates are solutions of a system of linear equations
- Robustness: The FRB estimates use the weights of the MM-estimates at the original sample
- Consistency: Under regularity conditions, the FRB distribution of $\widehat{\Theta}_n$ and the sample distribution of $\widehat{\Theta}_n$ converge to the same limiting distribution
- Smooth mappings: FRB commutes with smooth functions, such as $\mathbf{a} = \Sigma^{-1}(\boldsymbol{\mu}_1 \boldsymbol{\mu}_2)$

Variable selection in robust LDA

- Two group robust LDA
- Selection criterion: test for significance of the discriminant coordinate coefficients
- Use FRB distribution to estimate p-values

Example: Biting Flies

- Two groups of 35 flies (Leptoconops torrens and Leptoconops carteri)
- Measurements of
 - wing length
 - wing width
 - third palp length
 - third palp width
 - fourth palp length

Biting Flies: outliers

Wing width

Biting Flies: LDA

- Robust LDA
- Simultaneous two-sample MM-estimates
- Backward elimination variable selection

Biting Flies: FRB

Biting Flies: Backward elimination

	Variable				
Model	1	2	3	4	5
1	0.490	0.817	0.006	0.296	0.002
2	0.306	-	0.016	0.216	0.000
3	-	-	0.016	0.096	0.000
4	-	-	0.006	-	0.000

Conclusions and outlook

- Robust LDA based on S/MM-estimators
- Inference based on fast robust bootstrap
- Simulations confirm its good performance
- Variable selection based on contributions to discriminant coordinate
- More than two groups: Use a robust likelihood ratio type test statistics as selection criterion

Robust likelihood ratio type test statistics

$$\Lambda_{n}^{R} = \frac{\left|\widetilde{\Sigma}_{n}^{(g)}\right|}{\left|\widetilde{\Sigma}_{n}^{(1)}\right|} \equiv \frac{\tilde{\sigma}_{n}^{(g)}}{\tilde{\sigma}_{n}^{(1)}} = \frac{S_{n}(\widetilde{\boldsymbol{\mu}}_{1,n}^{(g)}, \dots, \widetilde{\boldsymbol{\mu}}_{g,n}^{(g)}, \widetilde{\Gamma}_{n}^{(g)})}{S_{n}(\widetilde{\boldsymbol{\mu}}_{n}^{(1)}, \widetilde{\Gamma}_{n}^{(1)})}$$

$$\Lambda_{n}^{R} = \frac{\sum_{j=1}^{g} \sum_{i=1}^{n_{j}} \rho_{0}([(\mathbf{x}_{ji} - \widetilde{\boldsymbol{\mu}}_{j,n}^{(g)})^{t}(\widetilde{\Gamma}_{n}^{(g)})^{-1}(\mathbf{x}_{ji} - \widetilde{\boldsymbol{\mu}}_{j,n}^{(g)})]^{\frac{1}{2}}/\tilde{\sigma}_{n}^{(g)})}{\sum_{j=1}^{g} \sum_{i=1}^{n_{j}} \rho_{0}([(\mathbf{x}_{ji} - \widetilde{\boldsymbol{\mu}}_{n}^{(1)})^{t}(\widetilde{\Gamma}_{n}^{(1)})^{-1}(\mathbf{x}_{ji} - \widetilde{\boldsymbol{\mu}}_{n}^{(1)})]^{\frac{1}{2}}/\tilde{\sigma}_{n}^{(g)})}$$

$$\Lambda_{n}^{R} = \frac{\sum_{j=1}^{g} \sum_{i=1}^{n_{j}} \rho_{0}([(\mathbf{x}_{ji} - \widetilde{\boldsymbol{\mu}}_{j,n}^{(g)})^{t}(\widetilde{\Sigma}_{n}^{(g)})^{-1}(\mathbf{x}_{ji} - \widetilde{\boldsymbol{\mu}}_{j,n}^{(g)})]^{\frac{1}{2}}}{\sum_{i=1}^{g} \sum_{i=1}^{n_{j}} \rho_{0}([(\mathbf{x}_{ji} - \widetilde{\boldsymbol{\mu}}_{n}^{(1)})^{t}(\widetilde{\Sigma}_{n}^{(g)})^{-1}(\mathbf{x}_{ji} - \widetilde{\boldsymbol{\mu}}_{n}^{(1)})]^{\frac{1}{2}}}$$

References

- He, X. and Fung, W.K. (2000).
 High breakdown estimation for multiple populations with applications to discriminant analysis.
 Journal of Multivariate Analysis, 72, 151–162.
- Lopuhaä, H. (1989).
 On the relation between S-estimators and M-estimators of multivariate location and covariance.

The Annals of Statistics, 17, 1662-1683.

- Salibian-Barrera, M., Van Aelst, S., and Willems, G. (2006).
 PCA based on multivariate MM-estimators with fast and robust bootstrap.
 Journal of the American Statistical Association, 101, 1198–1211.
- ► Tatsuoka, K.S. and Tyler, D.E. (2000). The uniqueness of S and M-functionals under non-elliptical distributions. The Annals of Statistics, 28, 1219–1243.
- Van Aelst, S. and Willems, G. (2010).
 Inference for robust canonical variate analysis.
 Advances in Data Analysis and Classification, to appear.