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@ p-dimensional data set
("] Group 1:xq7... , X1n, € II, ~ F| = FIJ'17E

("] Group 2:Xp] ... , Xop, € I, ~ F, = Fuz’z
@ Common covariance matrix >
) P(X € Hl) = P(X S Hz)
Liw) 1 1 —1,, . :_
@ di(x) = pX X — X s j=1,2




@ p-dimensional data set

@ Group 1: xy1...,x1, €I} ~F1 = F, 5
@ Group 2: x5 ..., Xy, €I~ Fa =F 5
@ Common covariance matrix

@ PXell))=PXelly)

® df(x) = S Ix — Sy j= 1,2

Linear Bayes rule: Classify x € R? into II; if
dr(x) > d(x)

and into II, otherwise.




Direction a that best separates the two populations:

a=3%"(u — )

The projection a’x is called the canonical variate or discriminant
coordinate




@ Estimate the centers p; and p; and the scatter X from the
data

@ Standard LDA uses the sample means x; and x,, and the
pooled sample covariance matrix

5 — (n1 — I)Sl + (nz — I)Sz

n+n —2




@ Use robust estimators of the centers p; and u; and the
common scatter X

— S-estimators
— MM-estimators




@ Observations {xi,...,x,} C R?

® o : [0, 00[— [0, 0] is bounded, increasing and smooth

S-estimates of the location i, and scatter 3, minimize |C| sub-
ject to

LS ([ - 7 - 1) =
i=1

among all T € R” and C € PDS(p)

(Davies 1987, Rousseeuw and Leroy 1987, Lopuhad 1989)



A popular family of loss functions is the Tukey biweight
(bisquare) family of p functions:

t2 t4 t6 .
E-L+L ifj <c
22 6ct —
PC(I) = { ‘

2
6‘2 .
e i > c.

@ The constant ¢ can be tuned for robustness (breakdown
point)

@ The choice of ¢ also determines the efficiency of the
S-estimator

— Trade-off robustness vs efficiency
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Put &, = det(3,)/%, the S-estimate of scale

Then the MM-estimates of the location 7, and shape I', mini-
mize

% Z o1 (I = TG (xi = 7)) /6
i=1

among all T € R? and G € PDS(p) for which det(G)=1

(Tatsuoka and Tyler 2000)




@ Both py and p; are taken from the same family

@ The constant ¢ in py can be tuned for robustness
(breakdown point)

@ MM-estimator inherits its robustness from the S-scale

@ The constant ¢ in p; can be tuned for efficiency of locations







Robust LDA

Robust two-sample estimates

@ Pool the scatter estimates ilm and iz,lz of both groups

S M X1n, + 1230,
Yn =
ny +np

@ Calculate simultaneous S-estimates of the two locations
and the common scatter matrix:

Zi1,, o, and £, minimize |C| subject to
1 AL !
P > ([(Xﬁ —T)'C (x — T,-)]é) =b

j=1 i=1

among all 71, T, € R?” and C € PDS(p)

(He and Fung 2000)

Similarly, simultaneous MM-estimates can be calculated
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@ Advantages of bootstrap

o Few assumptions
o Wide range of applications




@ Advantages of bootstrap

o Few assumptions
o Wide range of applications

@ Bootstrapping robust estimators

e High computational cost
o Robustness not guaranteed




For each bootstrap sample
@ Calculate an approximation for the estimates
@ Use the estimating equations
@ Fast to compute approximations
@ Inherit robustness of initial solution




@ Consider estimates that are the solution of a fixed point
equation 0, = g,(0,)

@ For a bootstrap sample ©7 = g*(07) consider the one-step
approximation

~

O =gi(

©)

n)




Fast and robust bootstrap

Fast and robust bootstrap
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@ Consider estimates that are the solution of a fixed point
equation ©, = gn(@n)

@ For a bootstrap sample ©7 = g*(07) consider the one-step
approximation

6, =2(6,)
@ Take a Taylor expansion about estimands ©:
6, = £.(0) + Vg (0)(6, — ©) + 0p(n™")
which can be rewritten as:
Vi(©, — ©) = [I - Vg,(0)] "' Vn(g,(0) — ©) + 0p(n~'/?)
@ We then obtain
V(0= 8,) = [1-Vg,(6,)] ' Va(g;(6,) —6,) + 0p(n~'72)
which yields the FRB estimate
OF =6, +[[- Vg,(6,)] (6 - 6,)
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Computational efficiency: The FRB estimates are solutions of a
system of linear equations

Robustness: The FRB estimates use the weights of the
MM-estimates at the original sample




Fast and robust bootstrap

Properties of fast robust bootstrap
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Computational efficiency: The FRB estimates are solutions of a
system of linear equations

Robustness: The FRB estimates use the weights of the
MM-estimates at the original sample

Consistency: Under regularity conditions, the FRB distribution
of ©, and the sample distribution of ©, converge
to the same limiting distribution

Smooth mappings: FRB commutes with smooth functions,
suchasa=""(u; — p,)

Robust Variable Selection in Discriminant Analysis

Van Aelst & Willems 20



@ Two group robust LDA

@ Selection criterion: test for significance of the discriminant
coordinate coefficients

@ Use FRB distribution to estimate p-values




@ Two groups of 35 flies (Leptoconops torrens and
Leptoconops carteri)
@ Measurements of

e wing length

@ wing width

o third palp length
o third palp width

o fourth palp length




Wing width

Group

T T
- - 20 35
wing width




@ Robust LDA
@ Simultaneous two-sample MM-estimates
@ Backward elimination variable selection




Examples
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Variable
Model 1 2 3 4 5
1 0.490 0.817 0.006 0.296 0.002
0.306 - 0.016 0.216 0.000

- - 0.016 0.096 0.000
- - 0.006 - 0.000

A WOWN




@ Robust LDA based on S/MM-estimators

@ Inference based on fast robust bootstrap

@ Simulations confirm its good performance

@ Variable selection based on contributions to discriminant
coordinate

@ More than two groups: Use a robust likelihood ratio type
test statistics as selection criterion
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