

Evolutionary Computation for Modelling and Optimization in Finance

Sandra Paterlini

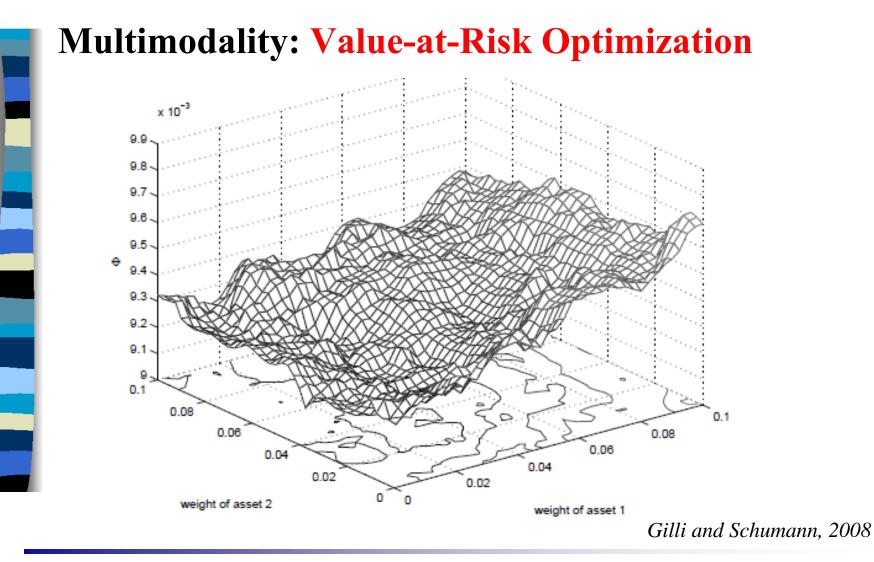
CEFIN & RECent, University of Modena and Reggio E., Italy

– Introduction

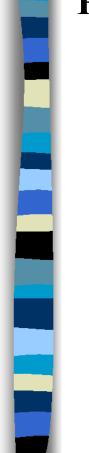
Why do we need Evolutionary Computation (EC)?

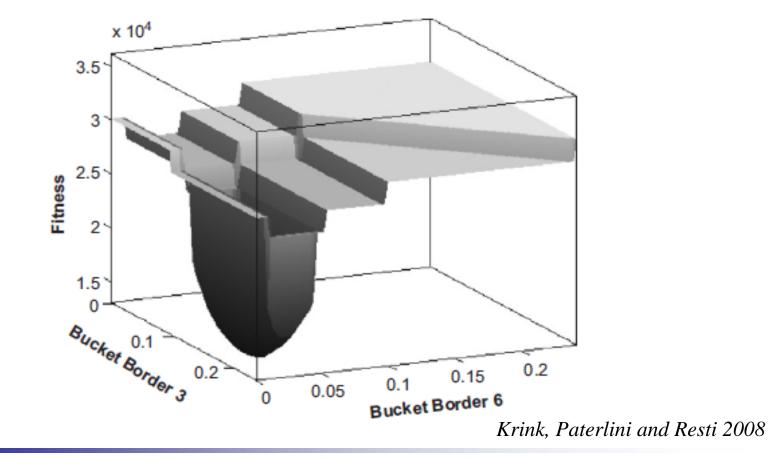
- conventional techniques require rigid assumptions (convexity, linearity, differentiability, explicitly defined objectives, problem can be split into subproblems, etc.)
- often the objective function is discontinuous, multimodal, has plateaus, etc.
- many discrete real-world problems are computational hard,
 i.e., an exact solution cannot be computed in reasonable time
- often we get away with simplifications (linearization, convexication, etc.), but not in all cases!
- conventional techniques lack generality; new problem solutions require new implementation
- ...but EAs are not always necessary!

- Why do we need EC in finance?

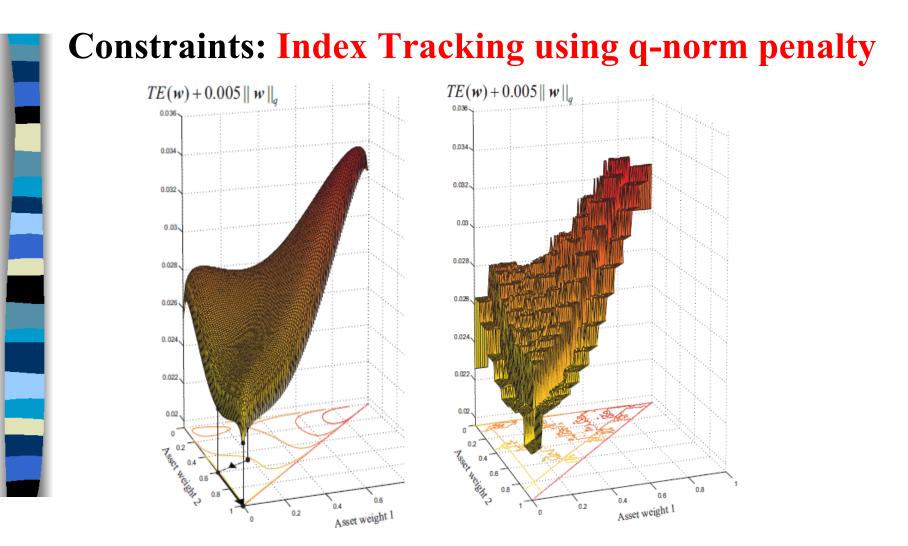


- Why do we need EC in finance?



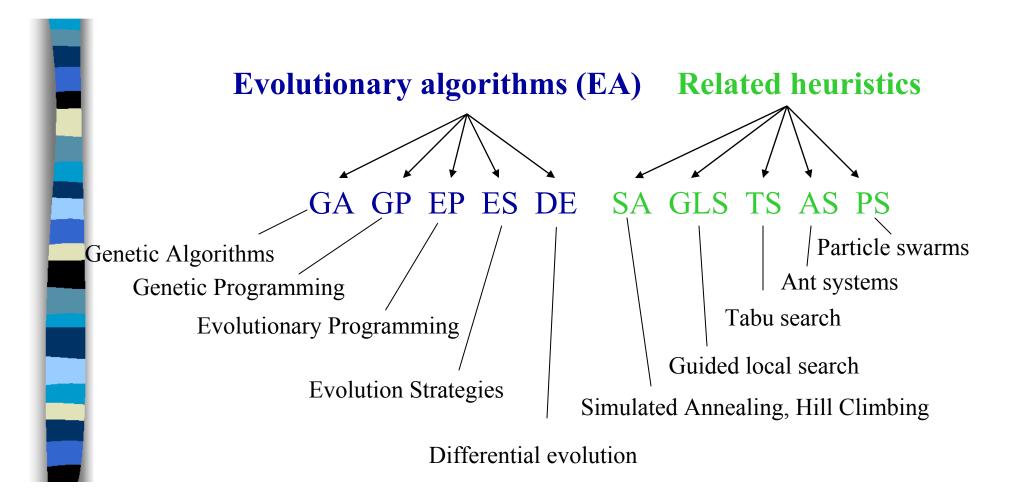


– Why do we need EC in finance?



Fastrich, Paterlini and Winker, 2010 5

- EAs and related search heuristics



EAs and related search heuristics

Common denominator in EAs

• Algorithms that deal with a population of individuals, which are selected and altered in an iterative process.

Why are EAs different from local search?

 EAs and related heuristics are based on the idea of competition and recombination of candidate solutions in a population

– Pseudo-code

void EvolutionaryAlgorithm()

t = 0;

initialise population P(t); // create random solutions
evaluate population P(t); // calculate fitnesses
while (not termination condition) {

```
t = t + 1;
```

select next generation P(t) from P(t-1);
alter P(t); // mutate and recombine genes
evaluate population P(t); // calculate fitnesses

P(t) = Population at time t

Multiobjective Financial Portfolio Optimization

- Multiobjective Portfolio Optimization

Mean-VaR_(1- α) Selection

(1*a*) min $f_1(\mathbf{w'}) = \overline{L} - VaR_{1-\alpha}$

(1b) $\max f_2(\mathbf{w'}) = \overline{L}$

subject to: (1c) $\sum_{i=1}^{N} w_i = 1$ $0 \le w_i \le 1$

(1d) – ... other non linear constraints

where

$$\overline{L} = \sum_{i=1}^{n_s} L_s / n_s$$

•Non-linear objective function

•Multiobjective Problem

•Non-linear constraints

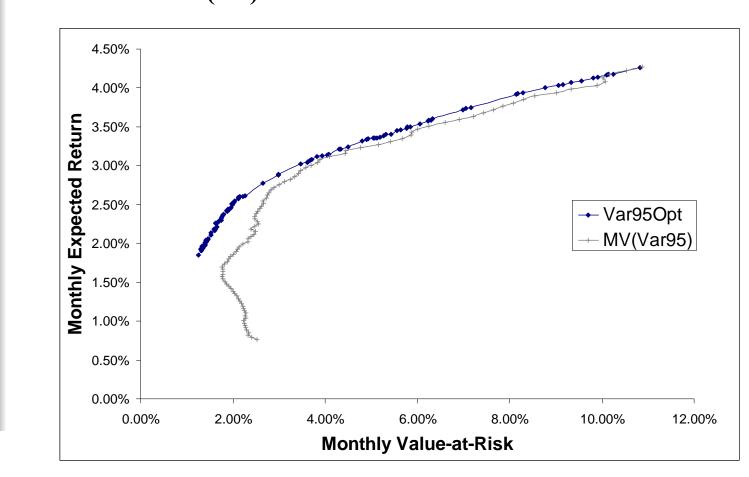
Idea

Main challenges

Evolve a set of Pareto optimal solutions, which are represented by the population of the evolutionary algorithm

 n_s corresponds to the expected absolute return of the portfolio

- Multiobjective Portfolio Optimization



Mean-VaR_(1- α) Selection

Domination and Diversity preservation

- During selection between two individuals *i* and *j* select the one which is **dominated** or **constrained-dominated** by less other solutions
- if they are dominated by the same number of solutions then select the one with the larger distance value (i.e. crowding operator)

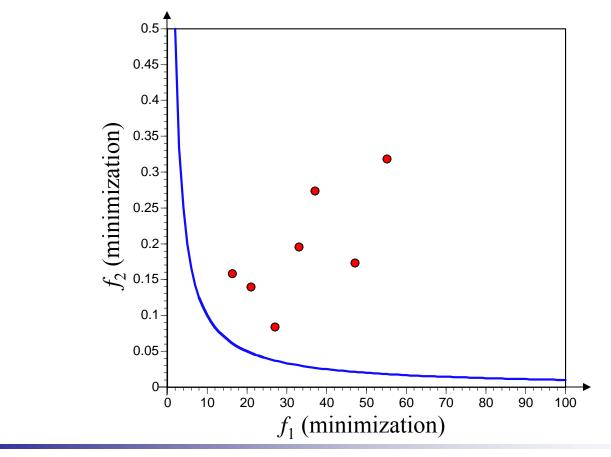
Dominance

Let *F* be a multiobjective minimization problem with *p* objectives f_k with k = 1, ..., p

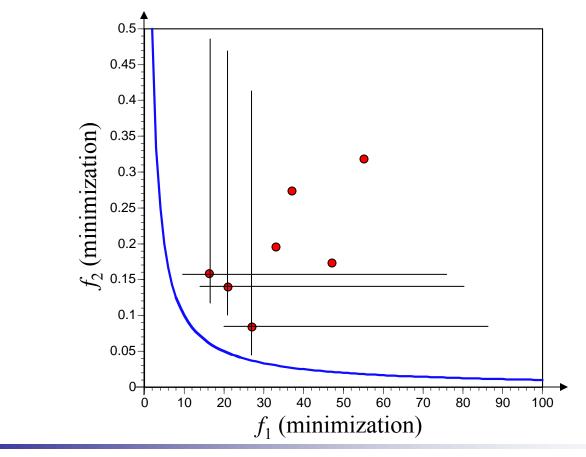
A candidate solution \mathbf{x}_i dominates \mathbf{x}_j if and only if

 $\forall k, f_k(\mathbf{x}_i) \le f_k(\mathbf{x}_j)$ $\exists l, f_l(\mathbf{x}_i) < f_l(\mathbf{x}_j)$

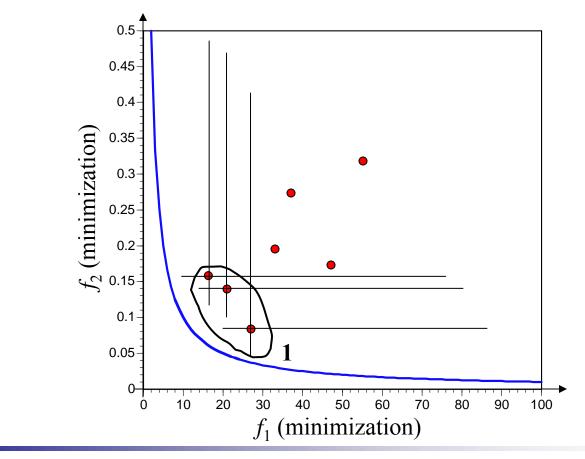
Determination of the non-dominated fronts

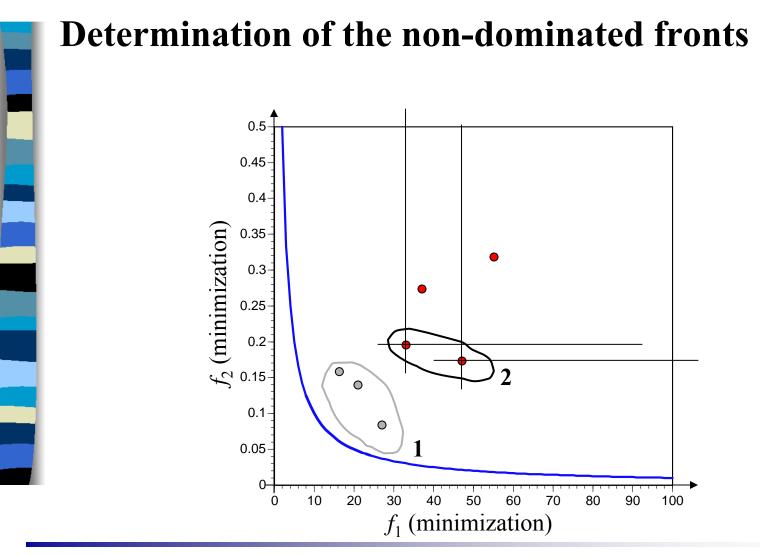


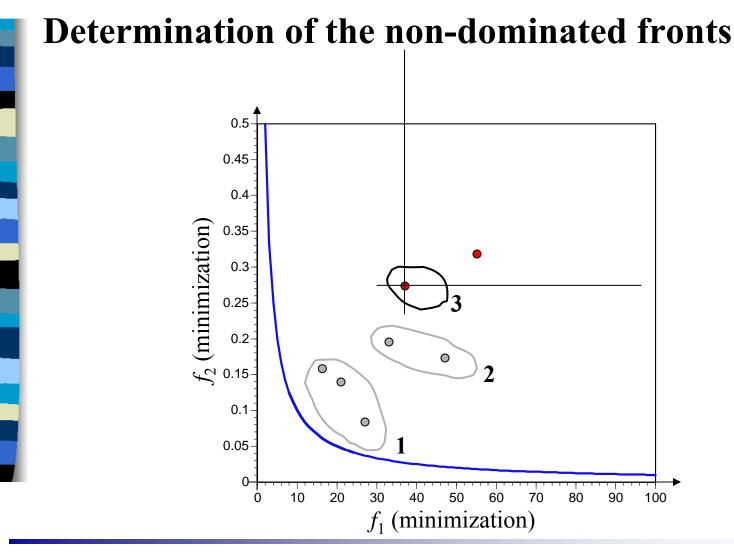
Determination of the non-dominated fronts

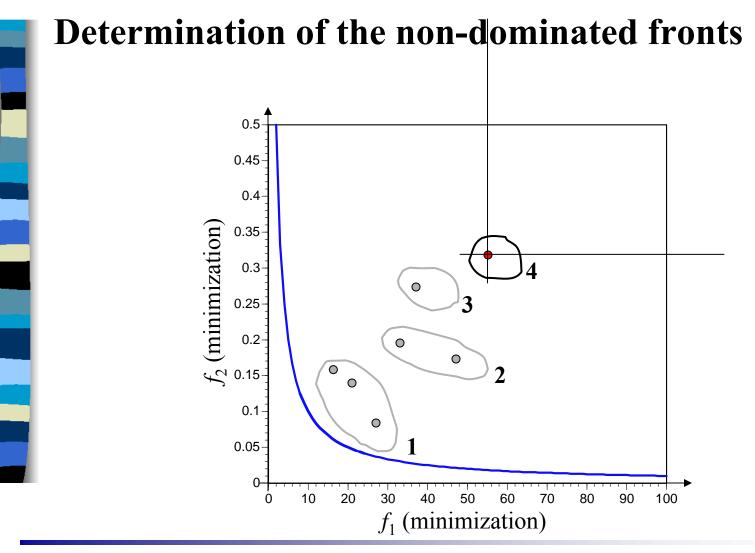


Determination of the non-dominated fronts

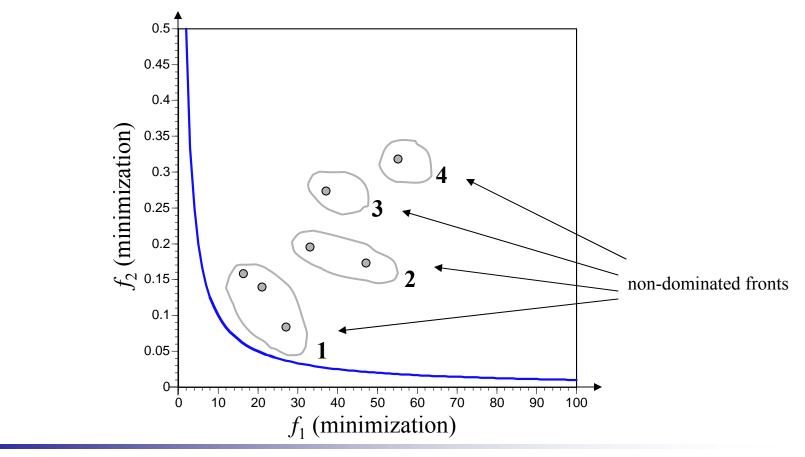






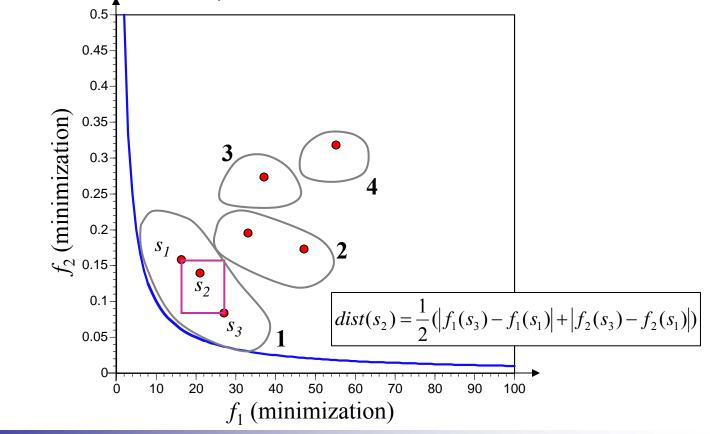


Determination of the non-dominated fronts



Diversity preservation

for each solution calculate the cuboid distance, i.e., the mean of the lower and upper distance for each objective f_i , to the nearest two solutions within the same front



void MultiObjectiveEvolutionaryAlgorithm()

t=0;

Initialize population P(t); // create random solutions
Evaluate population P(t); // calculate fitnesses
while (not termination condition){

t=t+1;

Determination of the constrained non-dominated fronts {

Calculate non-domination ranks

Diversity preservation }

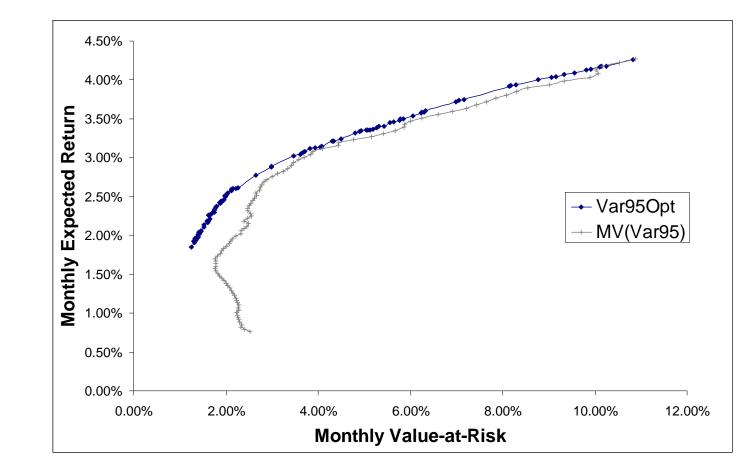
Multi-objective fitness assignment

Select next generation P(t) from P(t-1);

Alter P(t); // Mutate and recombine genes

Evaluate population P(t); // calculate fitnesses }

- Multiobjective Portfolio Optimization

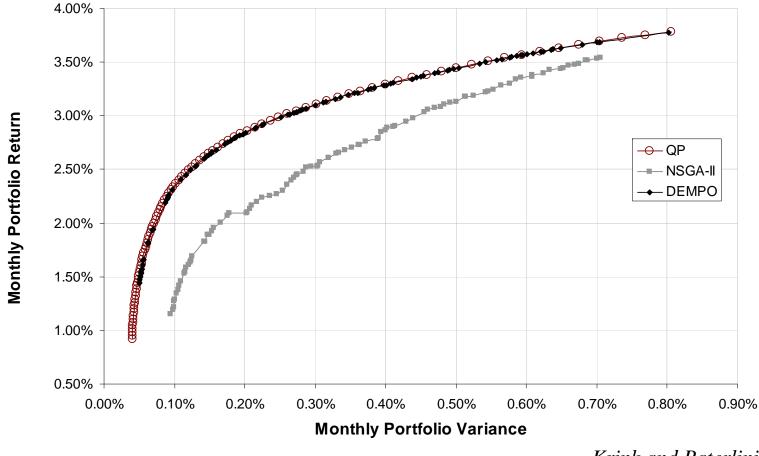


Mean-VaR_(1- α) Selection

Krink and Paterlini, 2009

- Multiobjective Portfolio Optimization

Main Challenges



Krink and Paterlini, 2009

Main challenges

- Multiobjective problems: use the whole population to determine the Pareto front
- Diversity preservation
 - Sharing versus Crowding
 - Distance Measures
- Constraint-handling
- Parameter Tuning
- Statistical Analysis of Convergence Properties
- Performance criteria in MO

– EC in Finance

Conclusions

- Hardware development, data availability and speed up methods support on-going research
- Financial industry shows a growing interest towards heuristic optimization methods
 - Financial Portfolio Selection
 - Option Pricing
 - Model Calibration
 - ••••
- Many financial problems can be effectively tackled by EC, as shown by many published papers and books

- EC in Finance

Conclusions

Many more will be published...

Computational Statistics & Data Analysis

3rd Special Issue on OPTIMIZATION HEURISTICS IN ESTIMATION AND MODELLING PROBLEMS Submission deadline: January 15, 2011

– References

References

- Gilli, M. and E. Schumann, Heuristic Optimization in Financial Modelling, WP
- Lyra, M., J. Paha, S. Paterlini and P. Winker, in press, Optimization Heuristics for Determining Internal Rating Grading Scales, Computational Statistics & Data Analysis, doi:10.1016/j.csda.2009.03.004.
- Krink, T. and S. Paterlini, in press, Multiobjective Optimization using Differential Evolution for Real-World Portfolio Optimization, Computational Management, DOI 10.1007/s10287-009-0107-6.
- Krink, T., S. Mittnik and S. Paterlini, 2009, Differential Evolution and Combinatorial Search for Constrained Index Tracking, Annals of Operation Research, 172, 153-176.
- Krink, T., S. Paterlini and A. Resti, 2008, The optimal structure of PD buckets, Journal of Banking and Finance, 32, 10, 2275-2286.
- Krink, T., S. Paterlini and A. Resti, 2007, Using Differential Evolution to improve the accuracy of bank rating systems, Computational Statistics & Data Analysis, Elsevier, 52/1, 68-87.