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Introduction

Why do we need Evolutionary Computation (EC)?
 conventional techniques require rigid assumptions 

(convexity, linearity, differentiability, explicitly defined 
objectives, problem can be split into subproblems, etc.)

 often the objective function is discontinuous, multimodal, 
has plateaus, etc.

 many discrete real-world problems are computational hard, 
i.e., an exact solution cannot be computed in reasonable time

 often we get away with simplifications (linearization, 
convexication, etc.), but not in all cases!

 conventional techniques lack generality; new problem 
solutions require new implementation

 …but EAs are not always necessary!
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Why do we need EC in finance?

Multimodality: Value-at-Risk Optimization

Gilli and Schumann, 2008
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Why do we need EC in finance?

Plateaus: Credit Risk Bucketing

Krink, Paterlini and Resti 2008
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Why do we need EC in finance?

Constraints: Index Tracking using q-norm penalty

Fastrich, Paterlini and Winker, 2010
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Evolutionary algorithms (EA)

Genetic Algorithms
Genetic Programming

Evolutionary Programming

Evolution Strategies

Differential evolution

EAs and related search heuristics

Simulated Annealing, Hill Climbing

Tabu search
Ant systems

Particle swarms

Related heuristics

Guided local search
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EAs and related search heuristics

Common denominator in EAs
 Algorithms that deal with a population of individuals, 

which are selected and altered in an iterative process.

Why are EAs different from local search?
 EAs and related heuristics are based on the idea of 

competition and recombination of candidate solutions 
in a population
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void EvolutionaryAlgorithm()
{

t = 0;
initialise population P(t); // create random solutions
evaluate population P(t); // calculate fitnesses
while (not termination condition) {

t = t + 1;
select next generation P(t) from P(t-1);
alter P(t); // mutate and recombine genes
evaluate population P(t); // calculate fitnesses

}
}

P(t) = Population at time t

Pseudo-code



Multiobjective
Financial Portfolio Optimization
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Multiobjective Portfolio Optimization

Mean-VaR(1-α) Selection
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Main challenges
•Non-linear objective function

•Multiobjective Problem

•Non-linear constraints

Idea 
Evolve a set of Pareto optimal 

solutions, which are represented by 
the population of the evolutionary 

algorithm
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Multiobjective Portfolio Optimization

Mean-VaR(1-α) Selection
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EAs in Multiobjective Optimization

Domination and Diversity preservation
 During selection between two individuals i and j select the 

one which is dominated or constrained-dominated by less
other solutions 

 if they are dominated by the same number of solutions then 
select the one with the larger distance value (i.e. crowding 
operator)
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EAs in Multiobjective Optimization

Dominance

A candidate solution xi dominates xj if and only if

 k,  fk(xi) ≤ fk(xj) 

 l, fl(xi) < fl(xj)

Let F be a multiobjective minimization problem with 
p objectives fk with k = 1,..., p



Sandra Paterlini © 14

EAs in Multiobjective Optimization

Determination of the non-dominated fronts
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EAs in Multiobjective Optimization

Diversity preservation
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for each solution calculate the cuboid distance, i.e., the mean of the lower and 
upper distance for each objective fi , to the nearest two solutions within the same front
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void MultiObjectiveEvolutionaryAlgorithm()
{

t=0;
Initialize population P(t); // create random solutions
Evaluate population P(t); // calculate fitnesses
while (not termination condition){

t=t+1;
Determination of the constrained non-dominated fronts {

Calculate non-domination ranks
Diversity preservation }

Multi-objective fitness assignment
Select next generation P(t) from P(t-1);
Alter P(t); // Mutate and recombine genes
Evaluate population P(t); // calculate fitnesses }

}

EAs in Multiobjective Optimization
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Multiobjective Portfolio Optimization

Mean-VaR(1-α) Selection
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Multiobjective Portfolio Optimization

Main Challenges
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EAs in Multiobjective Optimization

Main challenges
 Multiobjective problems: use the whole population to 

determine the Pareto front
 Diversity preservation

 Sharing versus Crowding
 Distance Measures

 Constraint-handling
 Parameter Tuning
 Statistical Analysis of Convergence Properties
 Performance criteria in MO
 …
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EC in Finance

Conclusions
 Hardware development, data availability and speed up 

methods support on-going research
 Financial industry shows a growing interest towards 

heuristic optimization methods
 Financial Portfolio Selection
 Option Pricing
 Model Calibration
 ...

 Many financial problems can be effectively tackled by 
EC, as shown by many published papers and books
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EC in Finance

Conclusions
 Many more will be published...

Computational Statistics & Data Analysis
3rd Special Issue on

OPTIMIZATION HEURISTICS IN ESTIMATION AND 
MODELLING PROBLEMS

Submission deadline: January 15, 2011
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