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Multivariate observation x = (xy,..., X;) € R from the mixture

9(x) = > _Aifj(x)

J=1
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Finite mixture estimation problem

Motivations, examples and notation
Review of EM algorithm-ology

Multivariate observation x = (xy,..., X;) € R from the mixture

X) =Y Aifi(x)
j=1

Assume independence of xq, ..., x, conditional of the
component from which x comes (Hall and Zhou 2003,...):

m r
-3y T
=1 k=

i.e. the dependence is induced by the mixture.
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Finite mixture estimation problem

Motivations, examples and notation
Review of EM algorithm-ology

Multivariate observation x = (xy,..., X;) € R from the mixture

X) =Y Aifi(x)
j=1

Assume independence of xq, ..., x, conditional of the
component from which x comes (Hall and Zhou 2003,...):

m r
= Z H ik (Xk)
=1 k=1
i.e. the dependence is induced by the mixture.

Goal: Estimate 8 = (A, f) given an i.i.d. sample from g
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Nonparametric mixture model

Motivations, examples and notation
Review of EM algorithm-ology

In parametric case f;( J € F, a parametric family
indexed by a parameter qb e R

The parameter of the mixture model is
0= (Aad)) = ()\17"'7)‘ma¢17"'a¢m)

Usual example: the univariate Gaussian mixture model,
f(x: ) = (x; (1. 02 ) = the pdf of (1}, 0?).
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Motivations, examples and notation
Review of EM algorithm-ology

Nonparametric mixture model

In parametric case f;( J € F, a parametric family
indexed by a parameter qb e R

The parameter of the mixture model is
0= ()‘7¢) = ()\17"'7)‘ma¢17"'a¢m)

Usual example: the univariate Gaussian mixture model,
f(x; ) = f (x; (1), aj‘?)) = the pdf of A(s1j, 0?).

Motivations here:

Do not assume any parametric form for the fi’s (e.g., avoid
assumptions on tails...)
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Notational convention

Motivations, examples and notation
Review of EM algorithm-ology

We have:
@ n = # of individuals in the sample
@ m = # of Mixture components
@ r = # of Repeated measurements (coordinates)
@ Throughout, we use the subscripts:
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Notational convention

Motivations, examples and notation
Review of EM algorithm-ology

We have:
@ n = # of individuals in the sample
@ m = # of Mixture components
@ r = # of Repeated measurements (coordinates)
@ Throughout, we use the subscripts:

The log-likelihood given data x4, ..., X, is

L(0) = "log | >N [ flxi)
s k=1

j=1 k=
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Motivations, examples and notation
Review of EM algorithm-ology

Motivating example: Water-level data

Example from Thomas Lohaus and Brainerd (1993).

The task:

@ n =405 subjects are
shown r = 8 vessels,
pointing at 1, 2, 4, 5, 7,
8, 10 and 11 o’clock

@ They draw the water
surface for each

@ Measure: (signed) angle
formed by surface with
horizontal

D. Chauveau — COMPSTAT 2010

Vessel tilted to point at 1:00
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Review of standard EM for mixtures

Motivations, examples and notation
Review of EM algorithm-ology

For MLE in finite mixtures, EM algorithms are standard.

A “complete” observation (X, Z) consists of:
@ The observed, “incomplete” data X
@ The “missing” vector Z, defined by

1 if X comes from component j

for1 <j<m,Z = )
0 otherwise
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Review of standard EM for mixtures

Motivations, examples and notation
Review of EM algorithm-ology

For MLE in finite mixtures, EM algorithms are standard.

A “complete” observation (X, Z) consists of:
@ The observed, “incomplete” data X
@ The “missing” vector Z, defined by

1 if X comes from component j

for1 <j<m,Z = .
0 otherwise

What does this mean?
@ In simulations: We generate Z first, then X|Z; =1 ~ f;

@ Inreal data, Z is a latent variable whose interpretation
depends on context.
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Let 6! be an “arbitrary” value of @
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Parametric (univariate) EM algorithm for mixtures

Motivations, examples and notation
Review of EM algorithm-ology

Let 8! be an “arbitrary” value of 8
E-step: Amounts to find the conditional expectation of each Z
/\/t-f(X,'; ¢/t)

Z}=Po[Zj = 1IX] = =57~
i o[<j = 11xi] Sy A (xi: @)
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Motivations, examples and notation
Review of EM algorithm-ology

Parametric (univariate) EM algorithm for mixtures

Let 8! be an “arbitrary” value of 8
E-step: Amounts to find the conditional expectation of each Z

N (i #])

Z}=Po[Zj = 1IX] = =57~
i o[<j = 11xi] Sy A (xi: @)

M-step: Maximize the “complete data” loglikelihood

0! = arg maxzz tlog [Nf(xi; #))]

i=1 j=1
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Motivations, examples and notation
Review of EM algorithm-ology

Parametric (univariate) EM algorithm for mixtures

Let 8! be an “arbitrary” value of 8
E-step: Amounts to find the conditional expectation of each Z
/\;f(Xi; d)jt)

Z}=Po[Zj = 1IX] = =57~
i o[<j = 11xi] Sy A (xi: @)

M-step: Maximize the “complete data” loglikelihood

0! = arg maxzz tlog [Nf(xi; #))]
i=1 j=1
il Z,; t+1 ity Zt Xl

Typically: A7*1 = =50 i+t = ST g e
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Semiparametric univariate mixture & EM-like algorithm

Motivations, examples and notation
Review of EM algorithm-ology

Identifiability: g(x) uniquely determines all A; and f;’s

@ Parametric case: When fi(x) = f(x; ¢;), generally OK
@ Nonparametric case: Some restrictions on f; are needed
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Multivariate non-parametric “npEM algorlthms Review of EM algorithm-ology
Further extensions

Semiparametric univariate mixture & EM-like algorithm

Identifiability: g(x) uniquely determines all A; and f;’s

@ Parametric case: When fi(x) = f(x; ¢;), generally OK
@ Nonparametric case: Some restrictions on f; are needed

Bordes Mottelet and Vandekerkhove (2006) and Hunter Wang
and Hettmansperger (2007) both showed that:
for f symmetric about the origin and Ay # 1/2,

2
go(x) =D Nf(x — )
j=1

is identifiable for the parameter 8 = (A, u, f).
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Semiparametric univariate mixture & EM-like algorithm

Motivations, examples and notation
Review of EM algorithm-ology

Identifiability: g(x) uniquely determines all A; and f;’s
@ Parametric case: When fi(x) = f(x; ¢;), generally OK
@ Nonparametric case: Some restrictions on f; are needed

Bordes Mottelet and Vandekerkhove (2006) and Hunter Wang
and Hettmansperger (2007) both showed that:
for f symmetric about the origin and Ay # 1/2,

2
go(x) =D Nf(x — )
j=1

is identifiable for the parameter 8 = (A, u, f).

Bordes Chauveau and Vandekerkhove (2007) introduced a
stochastic EM-like algorithm that includes a Kernel Density
Estimation (KDE) step.
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Mixture models and EM algorithms Model and algorithm
Multivariate non-parametric “npEM” algorithms Examples
Further extensions Adaptive bandwidths in the npEM algorithm

The blessing of dimensionality ()

Recall the model in the multivariate case, r > 1:
m r
=2 H ()
=1 k=t
N.B.: Assume conditional independence of xy, ..., X,

@ Hall and Zhou (2003) show that when m =2 and r > 3,
the model is identifiable under mild restrictions on the f(-)

@ Hall et al. (2005) ... from at least one point of view, the
‘curse of dimensionality’ works in reverse.
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The blessing of dimensionality ()

Recall the model in the multivariate case, r > 1:
m r
=2 H ()
=1 k=t
N.B.: Assume conditional independence of xy, ..., X,

@ Hall and Zhou (2003) show that when m =2 and r > 3,
the model is identifiable under mild restrictions on the f(-)

@ Hall et al. (2005) ... from at least one point of view, the
‘curse of dimensionality’ works in reverse.

@ Allman et al. (2008) give mild sufficient conditions for
identifiability whenever r > 3
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The notation gets even worse. . .

Suppose some of the r coordinates are identically distributed.

@ Let the r coordinates be grouped into B blocks of iid
coordinates.
Denote the block index of the kth coordinate by
bye{l,....B},k=1,...,r.

@ The model becomes

g(x) = > N ] fib ()
j=1 k=1
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The notation gets even worse. . .

Suppose some of the r coordinates are identically distributed.

@ Let the r coordinates be grouped into B blocks of iid
coordinates.
Denote the block index of the kth coordinate by
bye{l,....B},k=1,...,r.

@ The model becomes

g(x) = > N T fion ()
j=1 k=1

@ Special cases:
e by = k for each k: Fully general model, seen earlier
(Hall et al. 2005; Qin and Leung 2006)
e by = 1 for each k: Conditionally i.i.d. assumption
(Elmore et al. 2004)
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8 vessels, presented in order 11, 4,2, 7,10, 5, 1,8 o’clock
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Mixture models and EM algorithms Model and algorithm
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Further extensions Adaptive bandwidths in the npEM algorithm

Motivation: The water-level data example again

8 vessels, presented in order 11,4, 2,7, 10,5, 1,8 o’clock
Vessel tilted to point at 1:00 and 7:00
@ Assume that opposite clock-face
orientations lead to conditionally
iid responses (same behavior)
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Motivation: The water-level data example again

8 vessels, presented in order 11,4, 2,7, 10,5, 1,8 o’clock

@ Assume that opposite clock-face L 2
orientations lead to conditionally -
iid responses (same behavior)

@ B = 4 blocks defined by 7

b=(4,3,2,1,3,4,1,2)

@ eg.,bys=b;=1,i.e.,block 1
relates to coordinates 4 and 7, o~
corresponding to clock S
orientations 1:00 and 7:00
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Z/] = EB‘ [lelxI]

}H1r<=1 jf:k (Xik)
o\

2 A [T //bk(X/k)
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The nonparametric “EM” (npEM) algorithm

E-step: Same as usual, but now fy, is part of the parameter:

A Tzt i, (i)
> Ap Tt B, (Xi)

M-step: Maximize “complete data loglikelihood” for A:

)\t—l—'l Z

let = Eq[Zj]xi] =
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The nonparametric “EM” (npEM) algorithm

E-step: Same as usual, but now fy, is part of the parameter:

tHZ 1 /f:;k(xik)
> Ap Tt B, (Xi)

M-step: Maximize “complete data loglikelihood” for A:
)\t—l—'l Z

WKDE-step: Update estimate of f;, (component j, block /) by

t-+1 U — Xik
() = ,,,,sz oK (5%

k=1 i=1

let = Eq[Zj]xi] =

where C; = >} _4 I{p,—¢y = # of coordinates in block ¢

D. Chauveau — COMPSTAT 2010 Nonparametric multivariate mixtures



0 Mixture models and EM algorithms
@ Motivations, examples and notation
@ Review of EM algorithm-ology

e Multivariate non-parametric “npEM” algorithms
@ Model and algorithm
@ Examples

@ Adaptive bandwidths in the npEM algorithm

Q Further extensions

«O>» «Fr «=>»




Mixture models and EM algorithms Model and algorithm
Multivariate non-parametric “npEM” algorithms Examples
Further extensions Adaptive bandwidths in the npEM algorithm

Advertising!

All computational techniques in this talk are implemented in the
mixtools package for the R Statistical Software

www.r-project.org cran.cict.fr/web/packages/mixtools
e ‘The R Project for Statstical Computing = 'en ‘The Comprehensive R Archive Network
[« > ) e I +] @t vmmms-pojectongs Ba- coogie ] [« I cl[+] @mpiraancins ~(@ Google
T3 PuneperseShopina v ews 137Dk~ APPLES WATHS v Woturs+ X-PaneAviation Tramspors™ » 0 agepeso Shopping News (19 Divxv APPLEY WATHS Moteursw X-rhner Avtions Transportse >
The R Project for Statistical Computing p mixtools: Tools for amalyzing mixture models
| A colletion f R funcions foranalyzing mixture models
° @ X
] o | Vesion: 030
. . Depends: boot, R (22.0.0)
[ SN ° | Dates  February 5,2008 |
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i L L - L ] ‘Whats new? David Hunter Hoben Thomas Fengjuan Xuan
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ol Q Search License: GPL(2)
LK) . ’ ot Inviews: Cluser
oo

CRAN N
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Menbers & Donors

ailing Liss

ug Tracking ne= Package source:  mixtoals 030.argz
Developer Page = MacOS X bisy: miooks 01012
onferences binary: mixtools 0302ip
= R Referenee manual: mixtoals pdf

Ol sources:  mixtoals archive

u Getting started:
e R
— A S o
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Comparisons with Hall et al. (2005) inversion method
m = 2, r = 3, conditional independence (no blocks)
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Simulated trivariate benchmark models

Comparisons with Hall et al. (2005) inversion method
m = 2, r = 3, conditional independence (no blocks)

Forj=1,2and k = 1,2,3, we compute as in Hall et al.

MISEj = SZ / (s) i u))2 du

over S replications, where Z-j’s are the final posterior, and

1 s U — Xik
fi() = nhX-ZZ’7K< B )

'/ i=1
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MISE comparisons with Hall et al (2005) benchmarks

n =500, S = 300 replications, 3 models, log scale

Normal Double Exponential 1(10)

JMISE

005
&>
0.05

0.05

CAceeczzfEEEeTTT -~ Component 1
Bzaees sedye 4% Component 2 fmzzezes P H
o1 02 03 04 o1 02 03 04 o1 02 03 04
Ay M M
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The Water-level data

Previously analysed using mixtures by Hettmansperger and
Thomas (2000), and Elmore et al. (2004), using Assumptions
and model:

@ r = 8 coordinates assumed conditionally i.i.d.
@ Cutpoint approach = binning data in p-dim vectors

@ mixture of multinomial identifiable whenever r > 2m — 1
(Elmore and Wang 2003)
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The Water-level data

Previously analysed using mixtures by Hettmansperger and
Thomas (2000), and Elmore et al. (2004), using Assumptions
and model:

@ r = 8 coordinates assumed conditionally i.i.d.
@ Cutpoint approach = binning data in p-dim vectors

@ mixture of multinomial identifiable whenever r > 2m — 1
(Elmore and Wang 2003)

The non appropriate i.i.d. assumption masks interesting
features that our model reveals
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The Water-level data, m = 3 components, 4 blocks

Block 1: 1:00 and 7:00 orientations Block 2: 2:00 and 8:00 orientations

Appearance of Vessel

at Orientation = 1:00 \

Appearance of Vessel
at Orientation = 2:00

0.030
0.030

0.020
0.020

0010
0010

0.000
I
I
0.000

Block 3: 4:00 and 10:00 orientations Block 4: 5:00 and 11:00 orientations

Appearance of Vessel
at Orientation = 4:00

Appearance of Vessel
at Orientation = 5:00

0.030
0.030

0.020
0.020

0010
0010

0.000
I
0.000
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Bandwidth issues in the kernel density estimates

Crude method :

@ use R default (Silverman’s rule) based on sd (standard
deviation) and /QR (InterQuartileRange) computed by
pooling the n x r data points,

B , IQR ~1/5
h=0.9min {sd, 134} (nr)
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Bandwidth issues in the kernel density estimates

Crude method :

@ use R default (Silverman’s rule) based on sd (standard
deviation) and /QR (InterQuartileRange) computed by
pooling the n x r data points,

B , IQR ~1/5
h=0.9min {sd, 134} (nr)

@ Inappropriate for mixtures, e.g. for components with
supports of different locations and/or scales
Example (see later): f;; = Student and f,, = Beta
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Estimated sample size for jth component and ¢th block

n r
2> lin=Zj = nCoj

i=1 k=1
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lterative and per component & block bandwidths

Estimated sample size for jth component and ¢th block

Z Zﬂ{bk E} = an)\t
i=1 k=1
lterative bandwidth h/flv;H applying (e.g.) Silverman’s rule
QR
1.34

hi " =0.9min {aj@”,

} (nCZ)‘;—H )71/5

where ¢’s and /QR’s have to be estimated per
iteration/component/block
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lterative and per component/block sd’s

Augment each M-step to include

n r
> Zlin— Xk

t1 =1 k=1
M}@ B an)\/l-‘-H ’
1/2
ZZ by (Xik —M,+1)2
Ut+1 _ i=1 k=1
je nCe)\/l_‘-H

NB: these “parameters” are not in the model
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on {1,...,nC;} such that

Let x* denote the nC;, data in block ¢, and 7(-) be a permutation

£l l
Xr(1) S Xr(2) <

£l
< Xr(ncy)
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lterative and per component/block quantiles

Let x* denote the nC, data in block ¢, and 7(-) be a permutation
on {1,...,nC;} such that
Xe(1) S Xe(z) S -+ S Xo(ncy)
Define the weighted a-quantile estimate:
S
Qi) =xi.), where iy =minds: > Z! . > anClt

]
u=1

D. Chauveau — COMPSTAT 2010 Nonparametric multivariate mixtures
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lterative and per component/block quantiles

Let x* denote the nC, data in block ¢, and 7(-) be a permutation
on {1,...,nC;} such that

Xe(1) S Xe(z) S -+ S Xo(ncy)

Define the weighted a-quantile estimate:

Qi) =xi.), where iy =minds: > Z! . > anClt
u=1

t1 At 141
Set QR = Q575 — Qjfo 25
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lterative & adaptive bandwidth illustration

Multivariate example with m =2, r =5, B = 2 blocks
@ Block 1 = (x1, X2, X3),
components fiy = t(2,0), f»y = t(10,4)
@ Block 2 = (x4, Xs5),
components fio = Uyg 1}, o = Beta(1,5)

block 1 block 2
o
24
2 2
o o
o
N
S 4
o |
-
e
8 b=
s
0
2 4
8 o |
e T T T T T ° q T T T T T
-5 0 5 10 15 00 02 04 06 08 10
X X
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Default bandwidth

> blockid = ¢(1,1,1,2,2)
> a = npEM(x, 2, blockid)
> plot (a, breaks = 18)

> aS$bandwidth

[1] 0.5238855

Coordinates 1,2,3 Coordinates 4,5
T _ T
3 3
8 8
. ||
i
g N 5

DA
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Simulated data, n = 300 individuals

Default bandwidth Bandwidth per block & component

blockid = ¢(1,1,1,2,2) > b = npEM(x, 2, blockid, samebw=FALSE)

a = npEM(x, 2, blockid) > plot (b, breaks = 18)

>
>
> plot (a, breaks = 18) > b$bandwidth
, =
> a$bandwidth component 1 component 2
[

block 1 0.38573749 0.35232409
block 2 0.08441747 0.04388618

Coordinates 12,3 Coordinates 4.5

1] 0.5238855

Coordinates 1,2,3 Coordinates 4.5

015
)

Density
010
L
010
L

Densiy
Densiy

005
L

o005
L

000
000
L
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Examples

Model and algorithm

The Water-level data with adaptive bandwidth

Adaptive bandwidths in the npEM algorithm
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Pros and cons of the npEM algorithm

@ Pro: Easily generalizes beyond m = 2, r = 3 (not the case
for inversion methods)

@ Pro: Much lower MISE for similar test problems.
@ Pro: Computationally simple (in the mixtools package).

@ Pro: No need to assume conditionally i.i.d., and no loss of
information from categorizing data (as for for the cutpoint
approach)

@ Con: Not a true EM algorithm (no monotonicity property)
— Nonlinear Smoothed Likelihood MM algorithms Levine,
Hunter and Chauveau (2010, ...)
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Further extensions: Semiparametric models

Component or block density may differ only in location and/or
scale parameters, e.g.

fu(x) = 1 (““’”)

Oje gje
or 1
X - .
fie(x) = — 1 ( Mﬂ)
Oje Oje
or 1
X P .
) = L ()
Oje Oje

where f;'s, f;'s, or the single f remain fully unspecified

For all these situations special cases of the npEM algorithm
can easily be designed (some are already in mixtools).
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Further extensions: Stochastic npEM versions

In some setup, it may be useful to simulate the latent data from
the posterior probabilities:

2~ Mult(1; 2h,...,28), i=1,....n

Then the sequence (6!):~1 becomes a Markov Chain

@ Historically, parametric Stochastic EM introduced by
Celeux Diebolt (1985, 1986....), see also MCMC sampling
(Diebolt Robert 1994)

@ In non-parametric framework: Stochastic npEM for
reliability mixture models, Bordes Chauveau (COMPSTAT
2010...)
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