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Finite mixture estimation problem

Multivariate observation x = (x1, . . . , xr ) ∈ Rr from the mixture

g(x) =
m∑

j=1

λj fj(x)

Assume independence of x1, . . . , xr conditional of the
component from which x comes (Hall and Zhou 2003,. . . ):

g(x) =
m∑

j=1

λj

r∏
k=1

fjk (xk )

i.e. the dependence is induced by the mixture.

Goal: Estimate θ = (λ, f) given an i.i.d. sample from g
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Nonparametric mixture model

In parametric case fj(·) ≡ f (·; φj) ∈ F , a parametric family
indexed by a parameter φ ∈ Rd

The parameter of the mixture model is

θ = (λ,φ) = (λ1, . . . , λm,φ1, . . . ,φm)

Usual example: the univariate Gaussian mixture model,
f (x ; φj) = f

(
x ; (µj , σ

2
j )
)

= the pdf of N (µj , σ
2
j ).

Motivations here:
Do not assume any parametric form for the fjk ’s (e.g., avoid
assumptions on tails...)
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Notational convention

We have:
n = # of individuals in the sample
m = # of Mixture components
r = # of Repeated measurements (coordinates)
Throughout, we use the subscripts:

1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ r

The log-likelihood given data x1, . . . ,xn is

L(θ) =
n∑

i=1

log

 m∑
j=1

λj

r∏
k=1

fjk (xik )


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Motivating example: Water-level data

Example from Thomas Lohaus and Brainerd (1993).

The task:
n = 405 subjects are
shown r = 8 vessels,
pointing at 1, 2, 4, 5, 7,
8, 10 and 11 o’clock
They draw the water
surface for each
Measure: (signed) angle
formed by surface with
horizontal

Vessel tilted to point at 1:00
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Review of standard EM for mixtures

For MLE in finite mixtures, EM algorithms are standard.

A “complete” observation (X ,Z) consists of:
The observed, “incomplete” data X
The “missing” vector Z, defined by

for 1 ≤ j ≤ m, Zj =

{
1 if X comes from component j
0 otherwise

What does this mean?
In simulations: We generate Z first, then X |Zj = 1 ∼ fj
In real data, Z is a latent variable whose interpretation
depends on context.

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures



Mixture models and EM algorithms
Multivariate non-parametric “npEM” algorithms

Further extensions

Motivations, examples and notation
Review of EM algorithm-ology

Review of standard EM for mixtures

For MLE in finite mixtures, EM algorithms are standard.

A “complete” observation (X ,Z) consists of:
The observed, “incomplete” data X
The “missing” vector Z, defined by

for 1 ≤ j ≤ m, Zj =

{
1 if X comes from component j
0 otherwise

What does this mean?
In simulations: We generate Z first, then X |Zj = 1 ∼ fj
In real data, Z is a latent variable whose interpretation
depends on context.

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures



Mixture models and EM algorithms
Multivariate non-parametric “npEM” algorithms

Further extensions

Motivations, examples and notation
Review of EM algorithm-ology

Parametric (univariate) EM algorithm for mixtures

Let θt be an “arbitrary” value of θ

E-step: Amounts to find the conditional expectation of each Z

Z t
ij := Pθt [Zij = 1|xi ] =

λt
j f (xi ; φ

t
j )∑

j ′ λ
t
j ′ f (xi ; φ

t
j ′)

M-step: Maximize the “complete data” loglikelihood

θt+1 = arg max
θ

n∑
i=1

m∑
j=1

Z t
ij log

[
λj f (xi ; φj)

]

Typically: λt+1
j =

Pn
i=1 Z t

ij
n , µt+1

j =
Pn

i=1 Z t
ij xiPn

i=1 Z t
ij

, . . .
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Semiparametric univariate mixture & EM-like algorithm

Identifiability: g(x) uniquely determines all λj and fj ’s

Parametric case: When fj(x) = f (x ;φj), generally OK
Nonparametric case: Some restrictions on fj are needed

Bordes Mottelet and Vandekerkhove (2006) and Hunter Wang
and Hettmansperger (2007) both showed that:
for f symmetric about the origin and λ1 6= 1/2,

gθ(x) =
2∑

j=1

λj f (x − µj)

is identifiable for the parameter θ = (λ,µ, f ).

Bordes Chauveau and Vandekerkhove (2007) introduced a
stochastic EM-like algorithm that includes a Kernel Density
Estimation (KDE) step.
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The blessing of dimensionality (!)

Recall the model in the multivariate case, r > 1:

g(x) =
m∑

j=1

λj

r∏
k=1

fjk (xk )

N.B.: Assume conditional independence of x1, . . . , xr

Hall and Zhou (2003) show that when m = 2 and r ≥ 3,
the model is identifiable under mild restrictions on the fjk (·)
Hall et al. (2005) . . . from at least one point of view, the
‘curse of dimensionality’ works in reverse.

Allman et al. (2008) give mild sufficient conditions for
identifiability whenever r ≥ 3
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The notation gets even worse. . .

Suppose some of the r coordinates are identically distributed.
Let the r coordinates be grouped into B blocks of iid
coordinates.
Denote the block index of the k th coordinate by
bk ∈ {1, . . . ,B}, k = 1, . . . , r .
The model becomes

g(x) =
m∑

j=1

λj

r∏
k=1

fjbk (xk )

Special cases:
bk = k for each k : Fully general model, seen earlier

(Hall et al. 2005; Qin and Leung 2006)
bk = 1 for each k : Conditionally i.i.d. assumption

(Elmore et al. 2004)
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Motivation: The water-level data example again

8 vessels, presented in order 11, 4, 2, 7, 10, 5, 1, 8 o’clock

Assume that opposite clock-face
orientations lead to conditionally
iid responses (same behavior)
B = 4 blocks defined by
b = (4,3,2,1,3,4,1,2)

e.g., b4 = b7 = 1, i.e., block 1
relates to coordinates 4 and 7,
corresponding to clock
orientations 1:00 and 7:00

11:00 4:00 2:00

7:00 10:00 5:00

1:00 8:00
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Assume that opposite clock-face
orientations lead to conditionally
iid responses (same behavior)

B = 4 blocks defined by
b = (4,3,2,1,3,4,1,2)

e.g., b4 = b7 = 1, i.e., block 1
relates to coordinates 4 and 7,
corresponding to clock
orientations 1:00 and 7:00

Vessel tilted to point at 1:00 and 7:00
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The nonparametric “EM” (npEM) algorithm

E-step: Same as usual, but now fjbk is part of the parameter:

Z t
ij ≡ Eθt [Zij |xi ] =

λt
j
∏r

k=1 f t
jbk

(xik )∑
j ′ λ

t
j ′
∏r

k=1 f t
j ′bk

(xik )

M-step: Maximize “complete data loglikelihood” for λ:

λt+1
j =

1
n

n∑
i=1

Z t
ij

WKDE-step: Update estimate of fj` (component j , block `) by

f t+1
j` (u) =

1
nhC`λ

t+1
j

r∑
k=1

n∑
i=1

Z t
ij I{bk=`}K

(
u − xik

h

)
where C` =

∑r
k=1 I{bk=`} = # of coordinates in block `
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Advertising!

All computational techniques in this talk are implemented in the
mixtools package for the R Statistical Software

www.r-project.org cran.cict.fr/web/packages/mixtools
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Simulated trivariate benchmark models

Comparisons with Hall et al. (2005) inversion method
m = 2, r = 3, conditional independence (no blocks)

For j = 1,2 and k = 1,2,3, we compute as in Hall et al.

MISEjk =
1
S

S∑
s=1

∫ (
f̂ (s)
jk (u)− fjk (u)

)2
du

over S replications, where Ẑij ’s are the final posterior, and

f̂jk (u) =
1

nhλ̂j

n∑
i=1

ẐijK
(

u − xik

h

)
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ẐijK
(

u − xik

h

)

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures



Mixture models and EM algorithms
Multivariate non-parametric “npEM” algorithms

Further extensions

Model and algorithm
Examples
Adaptive bandwidths in the npEM algorithm

MISE comparisons with Hall et al (2005) benchmarks

n = 500, S = 300 replications, 3 models, log scale
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The Water-level data

Previously analysed using mixtures by Hettmansperger and
Thomas (2000), and Elmore et al. (2004), using Assumptions
and model:

r = 8 coordinates assumed conditionally i.i.d.
Cutpoint approach = binning data in p-dim vectors
mixture of multinomial identifiable whenever r ≥ 2m − 1
(Elmore and Wang 2003)

The non appropriate i.i.d. assumption masks interesting
features that our model reveals
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The Water-level data, m = 3 components, 4 blocks

Block 1:  1:00 and 7:00 orientations
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Block 2:  2:00 and 8:00 orientations
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Block 3:  4:00 and 10:00 orientations
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Block 4:  5:00 and 11:00 orientations

0.
00

0
0.

01
0

0.
02

0
0.

03
0

 Mixing Proportion (Mean, Std Dev) 
0.077 ( 27.5,  19.3)
0.431 (  2.0,  22.1)
0.492 ( −0.1,   6.1)

Appearance of Vessel
at Orientation = 5:00

 
 
 
 
 
 
 
 

−90 −60 −30 0 30 60 90

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures



Mixture models and EM algorithms
Multivariate non-parametric “npEM” algorithms

Further extensions

Model and algorithm
Examples
Adaptive bandwidths in the npEM algorithm

Outline: Next up. . .

1 Mixture models and EM algorithms
Motivations, examples and notation
Review of EM algorithm-ology

2 Multivariate non-parametric “npEM” algorithms
Model and algorithm
Examples
Adaptive bandwidths in the npEM algorithm

3 Further extensions

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures



Mixture models and EM algorithms
Multivariate non-parametric “npEM” algorithms

Further extensions

Model and algorithm
Examples
Adaptive bandwidths in the npEM algorithm

Bandwidth issues in the kernel density estimates

Crude method :

use R default (Silverman’s rule) based on sd (standard
deviation) and IQR (InterQuartileRange) computed by
pooling the n × r data points,

h = 0.9 min
{

sd ,
IQR
1.34

}
(nr)−1/5

Inappropriate for mixtures, e.g. for components with
supports of different locations and/or scales
Example (see later): f11 ≡ Student and f22 ≡ Beta
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Iterative and per component & block bandwidths

Estimated sample size for j th component and `th block

n∑
i=1

r∑
k=1

I{bk=`}Z t
ij = nC`λ

t
j

Iterative bandwidth ht+1
j` applying (e.g.) Silverman’s rule

ht+1
j` = 0.9 min

{
σt+1

j` ,
IQRt+1

j`

1.34

}
(nC`λ

t+1
j )−1/5

where σ’s and IQR’s have to be estimated per
iteration/component/block
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Iterative and per component/block sd’s

Augment each M-step to include

µt+1
j` =

n∑
i=1

r∑
k=1

Z t
ij I{bk=`}xik

nC`λ
t+1
j

,

σt+1
j` =


n∑

i=1

r∑
k=1

Z t
ij I{bk=`}(xik − µt+1

j` )2

nC`λ
t+1
j


1/2

NB: these “parameters” are not in the model
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Iterative and per component/block quantiles

Let x` denote the nC` data in block `, and τ(·) be a permutation
on {1, . . . ,nC`} such that

x`τ(1) ≤ x`τ(2) ≤ · · · ≤ x`τ(nC`)

Define the weighted α-quantile estimate:

Qt+1
j`,α = x`τ(iα), where iα = min

{
s :

s∑
u=1

Z t
τ(u)j ≥ αnC`λ

t+1
j

}

Set IQRt+1
j` = Qt+1

j`,0.75 −Qt+1
j`,0.25
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Iterative & adaptive bandwidth illustration

Multivariate example with m = 2, r = 5, B = 2 blocks
Block 1 = (x1, x2, x3),
components f11 = t(2,0), f21 = t(10,4)
Block 2 = (x4, x5),
components f12 = U[0,1], f22 = Beta(1,5)
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Simulated data, n = 300 individuals

Default bandwidth
> blockid = c(1,1,1,2,2)
> a = npEM(x, 2, blockid)
> plot(a, breaks = 18)
> a$bandwidth
[1] 0.5238855
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Bandwidth per block & component
> b = npEM(x, 2, blockid, samebw=FALSE)
> plot(b, breaks = 18)
> b$bandwidth

component 1 component 2
block 1 0.38573749 0.35232409
block 2 0.08441747 0.04388618
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Simulated data, n = 300 individuals

Default bandwidth
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Bandwidth per block & component
> b = npEM(x, 2, blockid, samebw=FALSE)
> plot(b, breaks = 18)
> b$bandwidth
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The Water-level data with adaptive bandwidth
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> b$band
comp 1 comp 2 comp 3

block 1 12.172 1.4597 0.97535
block 2 13.996 2.7370 2.27581
block 3 19.190 2.5545 2.27582

block 4 12.363 1.2772 1.62558
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Pros and cons of the npEM algorithm

Pro: Easily generalizes beyond m = 2, r = 3 (not the case
for inversion methods)
Pro: Much lower MISE for similar test problems.
Pro: Computationally simple (in the mixtools package).
Pro: No need to assume conditionally i.i.d., and no loss of
information from categorizing data (as for for the cutpoint
approach)
Con: Not a true EM algorithm (no monotonicity property)
→ Nonlinear Smoothed Likelihood MM algorithms Levine,
Hunter and Chauveau (2010, . . . )
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Further extensions: Semiparametric models

Component or block density may differ only in location and/or
scale parameters, e.g.

fj`(x) =
1
σj`

fj

(
x − µj`

σj`

)
or

fj`(x) =
1
σj`

f`

(
x − µj`

σj`

)
or

fj`(x) =
1
σj`

f
(

x − µj`

σj`

)
where fj ’s, f`’s, or the single f remain fully unspecified

For all these situations special cases of the npEM algorithm
can easily be designed (some are already in mixtools).

D. Chauveau – COMPSTAT 2010 Nonparametric multivariate mixtures



Mixture models and EM algorithms
Multivariate non-parametric “npEM” algorithms

Further extensions

Further extensions: Stochastic npEM versions

In some setup, it may be useful to simulate the latent data from
the posterior probabilities:

Ẑ
t
i ∼ Mult

(
1 ; Z t

i1, . . . ,Z
t
im
)
, i = 1, . . . ,n

Then the sequence (θt)t≥1 becomes a Markov Chain

Historically, parametric Stochastic EM introduced by
Celeux Diebolt (1985, 1986,. . . ), see also MCMC sampling
(Diebolt Robert 1994)
In non-parametric framework: Stochastic npEM for
reliability mixture models, Bordes Chauveau (COMPSTAT
2010. . . )
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