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IntroductionIntroduction

• Clusterwise linear regression is a useful technique 

when heterogeneity is present in the data.

• It has been proposed as a way to identify both the 

partition of the data and the relevant regression 

models, one for each cluster

• Some references: Spaeth (1979), Wayne et al (1988) 

Hennig (2000), Plaia (2001), Caporossi and Hansen 

(2007) 

• Aim: to adapt clusterwise regression to interval-valued 

data



IntervalInterval--Value Data Value Data -- II

• Interval-valued data arise in practical situations such as

• recording monthly interval temperatures in 

meteorological stations

• daily interval stock prices 

• or from the aggregation of huge data-bases into a 

reduced number of groups.

• Interval-valued data has been very much considered in 

Symbolic Data Analysis

• Book references: Bock and Diday (2000), Billard and 

Diday (2006), Diday and Noirhome (2008)



IntervalInterval--Value Data Value Data -- IIII

Each object i is described by a vector of intervals

Interval-Valued Data Analysis Tools are very much required

 Pulse Rate Systolic pressure Diastolic pressure 

1 [60, 72] [90,130] [70,90] 

2 [70,112] [110,142] [80,108] 

3 [54,72] [90,100] [50,70] 

4 [70,100] [130,160] [80,110] 

5 [63,75] [60,100] [140,150] 

6 [44,68] [90,100] [50,70] 

 



• The present clusterwise regression model is based

• On the dynamic clustering algorithm (Diday and Simon 

(1976))

• Center and range linear regression model (Lima Neto and De 

Carvalho (2008)

• : set of observations described by p+1

interval-valued variables;

• Obervation i ∈ E is described by a vector of intervals

where

and (i=1,…,n; j=1,…,p)

Clusterwise Regression Model Clusterwise Regression Model -- II

},,1{ nE K=

),,,( 1 iipii zww L=e

],[ U

ij

L

ijij www = ],[ U

i

L

ii zzz =



• Obervation i ∈ E is also described by a vector of bi-

variate quantitative vectors 

where

Clusterwise Regression Model Clusterwise Regression Model -- IIII
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• Aim:

• Obtain a partition of E into K clusters P1, …, PK, each cluster Pk

(k=1,…,K) being represented by a prototype (model), by 

(locally) optimizing an adequacy criterion

• Particularity of the method:

• The prototype of each cluster is given by a linear regression 

between dependent and independent interval-valued variables

Clusterwise Regression Model Clusterwise Regression Model -- IIIIII
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• Adequacy criterion

Clusterwise Regression Model Clusterwise Regression Model -- IVIV
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• Initialization

• Fixe the number K (2 ≤ K << n) of clusters;

• Set t=0;

• Randomly obtain 

• Step 1: determination of the best prototypes

• Set t = t + 1;

• The partition                                         is fixed

Algorithm Algorithm -- II
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• The prototype

of cluster Pk (k=1,…,K), which minimizes J, has the 

least squares estimates of the parameters given by 

the solution of the system

where

Algorithm Algorithm -- IIII
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AlgorithmAlgorithm--IIIIII



• Step 2: definition of the best partition

• Stop criterion. Repeat steps 1 and 2 until the criterion 

J converges

Algorithm Algorithm -- IVIV
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• A new observation                            is described by 

the vector of bivariate quantitative vectors

• Prediction of the interval                   from the 

estimated bivariate vectors                            (k=1,…,K)

where

PredictionPrediction
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• Determination coefficients

• Lower and upper boundaries root-mean-square error 

“Goodness“Goodness--ofof--fit” measures fit” measures -- II
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• 33 car models described by 2 interval-valued 

variables: price y and engine capacity x

• http://www.info.fundp.ac.be/asso/index.html

Application: car intervalApplication: car interval--valued data set valued data set -- II



• Aim: predict Price (y) from Engine Capacity (x) 

through linear regression models

• Both variables – Price and Engine Capacity –, have 

been considered for clustering purposes

• The algorithm has been performed on this data set in 

order to obtain a partition into K = {1, 2, 3} clusters

• For a fixed K, the algorithm is run 100 times and the 

best result according to the adequacy criterion is 

selected.

Application: car intervalApplication: car interval--valued data set valued data set -- IIII



• Regression equations

• Determination coefficients

Application: car intervalApplication: car interval--valued data set valued data set -- IIIIII



• Predictions: the estimates of the K regression models are 

combined according to the “stacked regressions” 

approach (Breiman (1996))

• Stacked regressions: uses cross validation data and 

least squares under non-negativity constraints for 

forming linear combinations of different predictors

• These predictions are combined to obtain the predictions 

for the observations belonging to the test data set

• RMSEL and RMSEU are computed from the predicted 

values on the test data sets

Application: car intervalApplication: car interval--valued data set valued data set -- IVIV



• This process is repeated 100 times and it is calculated 

the average and standard deviation of the RMSEL and 

RMSEU measures

• 2 regression models given by the 2-cluster partition 

give the best preditive model through the “stacked 

regressions” approach

Application: car intervalApplication: car interval--valued data set valued data set -- VV



• It was introduced a clusterwise regression model for 

interval-valued data.

• It combines the dynamic clustering algorithm with the 

center and range regression model for interval-valued

• Aim: to identify both the partition of the data and the 

relevant regression models (one for each cluster).

• Experiments with a car interval-valued data set 

showed the interest of this approach

Concluding RemarksConcluding Remarks
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