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Clusterwise linear regression is a useful technique
when heterogeneity is present in the data.

It has been proposed as a way to identify both the
partition of the data and the relevant regression
models, one for each cluster

Some references: Spaeth (1979), Wayne et al (1988)
Hennig (2000), Plaia (2001), Caporossi and Hansen
(2007)

Aim: to adapt clusterwise regression to interval-valued
data




 Interval-valued data arise in practical situations such as

 recording monthly interval temperatures in
meteorological stations

« dalily interval stock prices

« or from the aggregation of huge data-bases into a
reduced number of groups.

 Interval-valued data has been very much considered in
Symbolic Data Analysis

« Book references: Bock and Diday (2000), Billard and
Diday (2006), Diday and Noirhome (2008)
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Each object i is described by a vector of intervals

Interval-Valued Data Analysis Tools are very much required




« The present clusterwise regression model is based

* On the dynamic clustering algorithm (Diday and Simon
(1976))

« Center and range linear regression model (Lima Neto and De
Carvalho (2008)

- E={l,...,n} : set of observations described by p+1
interval-valued variables;

« Obervation i € E is described by a vector of intervals

e, =Wy, W,,2;) where

wy =lw;i,wil and z,=[z-.2"1 (i=1,...,n; j=1,....p)




« Obervation i € E is also described by a vector of bi-
variate quantitative vectors

tl' — (X,-p“',X,-p,y,-) Where
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 Aim:

« Obtain a partition of E into K clusters P4, ..., Py, each cluster P,
(k=1,...,K) being represented by a prototype (model), by
(locally) optimizing an adequacy criterion

« Particularity of the method:

« The prototype of each cluster is given by a linear regression
between dependent and independent interval-valued variables
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« Adequacy criterion
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* Initialization
* Fixe the number K (2 <K << n) of clusters;
e Set t=0;
- Randomly obtain ~ P? =(P?,...,P")

« Step 1: determination of the best prototypes
e« Sett=1t+1;
* The partition p“™ =p"™" .. Py is fixed




« The prototype
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of cluster P, (k=1,...,K), which minimizes J, has the
least squares estimates of the parameters given by
the solution of the system
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« Step 2: definition of the best partition
P=lic E:(5,4) (8:4) < &) @) h=1,.... K}

« Stop criterion. Repeat steps 1 and 2 until the criterion
J converges




* A new observation e=(w,,---,w,,z) is described by
the vector of bivariate quantitative vectors t =(x,,---,x,,y)

« Prediction of the interval z =[z",z"] from the
estimated bivariate vectors 9, = (9. 9) (k=1,...,K)

A _ AL AU . AL _ AC . AT /\U _ AC AT
Loy =24y, 2y I With 2y = ) = Iy and 2y = 9 + Yy,
where

9 = Boy +ZJ_ Biwx; and 9, == B, +ZJ B,




 Determination coefficients
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« Lower and upper boundaries root-mean-square error
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33 car models described by 2 interval-valued
variables: price y and engine capacity x

http://www.info.fundp.ac.be/asso/index.html
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Fig. 1. The car interval-valued data set.




Aim: predict Price (y) from Engine Capacity (x)
through linear regression models

Both variables — Price and Engine Capacity —, have
been considered for clustering purposes

The algorithm has been performed on this data set in
order to obtain a partition into K = {1, 2, 3} clusters

For a fixed K, the algorithm is run 100 times and the
best result according to the adequacy criterion is
selected.




* Regression equations

K — partition|cluster k “Center Model” “Range Model”
1 1 Y1y = —98840.9 + 79.2 x§ -y,rh = —341.4 + 60.9 =7
2 1 Y1) = —63462.2 + 59.6 x| g 1 = —4560.1 +47.1 =
2 Y(a) = —22836.5 + 68.8 x| (o) = 34563.6 + 68.6 1
1 ﬁﬁl = —77422.1 +82.0z5| gy, =2229.7+92.2 ]
3 2 yz = —58484.1 + T1.1x7|y(py = 101952.9 — 546.7 =]
3 Y3y = —T73362.1 +62.0z7| y/3) = —9755.9 + 53.2x1

« Determination coefficients

K -partition| 1 2 3
cluster & | 1 L2123
R:‘:!;.i:] 0.9310.95(0.91|0.97(0.99|0.98
0.53]0.79(0.66|0.98|0.98|0.83




Predictions: the estimates of the K regression models are
combined according to the “stacked regressions”
approach (Breiman (1996))

Stacked regressions: uses cross validation data and
least squares under non-negativity constraints for
forming linear combinations of different predictors

These predictions are combined to obtain the predictions
for the observations belonging to the test data set

RMSE, and RMSE , are computed from the predicted
values on the test data sets




« This process is repeated 100 times and it is calculated
the average and standard deviation of the RMSE, and
RMSE , measures

K -partition 1 2 3
RMSEL |96649.28 (13812.49)(90417.42 (13538.22)|94993.75 (11376.24)
RMSEy |143416.6 (17294.02)(135471.4 (17027.49)(137825.9 (14243.29)

« 2 regression models given by the 2-cluster partition
give the best preditive model through the “stacked
regressions” approach




It was introduced a clusterwise regression model for
interval-valued data.

It combines the dynamic clustering algorithm with the
center and range regression model for interval-valued

Aim: to identify both the partition of the data and the
relevant regression models (one for each cluster).

Experiments with a car interval-valued data set
showed the interest of this approach
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