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Motivation for nonlinear dimensionality reduction

• High-dimensional data are
– difficult to represent
– difficult to understand
– difficult to analyze

• Motivation #1:
– To visualize data living in a d-dimensional space (d > 3)

• Motivation #2:
– Models (regression, classification, clustering) based on high-dimensional

data suffer from the curse of dimensionality
– Need to reduce the dimension of data while keeping information content!
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Motivation



Visualization

• These are data
• It is difficult to see something…
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Motivation

annual increase (%), infant mortality (‰), illiteracy ratio (%), 
school attendance (%), GIP, annual GIP increase (%)



Visualization

• These are the same data
• under different visualization paradigms
• possible to see groups, relations, outliers, …
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Motivation



Not all NLDR methods perform equally !
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Motivation

Geodesic NLM

CDAIsomap



Stochastic Neighbor Embedding

• SNE and t-SNE are nowadays considered as ‘good’ methods for NDLR
• Examples
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Motivation

From: L. Van der Maaten & G. 
Hinton, Visualizing Data using t-
SNE, Journal of Machine Learning 
Research 9 (2008) 2579-2605

t-SNE MDS
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Outline

• NDLR: a historical perspective
– stress function
– intrusion and extrusions
– geodesic distances

• SNE and t-SNE
– algorithm
– gradient
– transformed distances

• Experiments
– with Euclidean distances
– with geodesic distances

• Conclusions
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NDLR: a historical perspective



From MDS to more general cost functions

• MDS follows the idea of

• Extension:

to give more importance to
– small distances
– close data
– …
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NDLR: a historical perspective → Stress function
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Breakthrough #1



Limitations of linear projections

• Even simple manifolds can be poorly projected
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NDLR: a historical perspective → Intrusions and extrusions



Limitations of linear projections

• Even simple manifolds can be poorly projected

• Points originally far from eachother are projected close: 
this is an intrusion
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NDLR: a historical perspective → Intrusions and extrusions



Nonlinear projections

• Goal: to unfold, rather than to project (linearly)
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NDLR: a historical perspective → Intrusions and extrusions



Nonlinear projections

• Goal: to unfold, rather than to project (linearly)

• Intrusions can be hopefully decreased, but extrusions could appear
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NDLR: a historical perspective → Intrusions and extrusions



The user’s point of view

• Favouring intrusions or extrusions is related to the application 
(user’s point of view)

• General way of handling the compromise:

• Nowadays, few methods acknowledge this need for a trade-off !
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NDLR: a historical perspective → Intrusions and extrusions

( ) 







−+








=

σ
δ

λ
σ

λ ijij
ij f

d
fw 1 Breakthrough #2

allows intrusions allows extrusions



Geodesic distances

• Goal: to measure distances along the manifold

• Such distances are more easily preserved
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NDLR: a historical perspective → Geodesic distances

Breakthrough #3



Geodesic and graph distances

• Geodesic distances: finding the shortest way between data along the 
manifold

• Problem: the manifold is unknown → approximate it by a graph
• It exists efficient algorithms for finding shortest paths
• The graph can be built by connecting data in a k-neighborhood, or in 

a ε-ball
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2-d data

Approximation of
Geodesic distance

NDLR: a historical perspective → Geodesic distances



Distance preservation methods

Euclidean
distances in 
HD space

Geodesic
distances in 
HD space

Metric MDS Isomap

Favors
intrusions

Sammon
NLM

Geodesic
NLM

Favors
extrusions CCA CDA
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NDLR: a historical perspective
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Distance preservation methods

Euclidean
distances in 
HD space

Geodesic
distances in 
HD space

Metric MDS Isomap

Favors
intrusions
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Favors
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NDLR: a historical perspective
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Outline

• NDLR: a historical perspective
– stress function
– intrusion and extrusions
– geodesic distances

• SNE and t-SNE
– algorithm
– gradient
– transformed distances

• Experiments
– with Euclidean distances
– with geodesic distances

• Conclusions
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SNE and t-SNE



SNE and t-SNE

• In the original space, the similarity between yi and yj is defined as

• Similarities are not symmetric (individual widths) !
• pj|i is the empirical probability of yj to be a neighbor of yi
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SNE and t-SNE → Algorithm
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SNE and t-SNE

• In the original space, the similarity between yi and yj is defined as

• Similarities are not symmetric (individual widths) !
• pj|i is the empirical probability of yj to be a neighbor of yi

• Individuals widths λi: set (individually) through a global « perplexity » 
parameter
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SNE and t-SNE → Algorithm
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SNE and t-SNE

• In the embedding space, the similarity between xi and xj is defined as

• Similarities are symmetric
• t(u,n) is proportional to a Student t with n degrees of freedom

(n controls the thickness of the tail)
• SNE: n → ∞ t-SNE: n = 1
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SNE and t-SNE → Algorithm
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SNE and t-SNE

• Now that similarties are defined in both spaces, how to compare 
them?

– This seems to be a major difference with respect to other methods, based
on square erros!

• E is minimized by gradient descent, to find locations xi.
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SNE and t-SNE → gradient
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SNE and t-SNE: gradient

• Now that similarities are defined in both spaces, how to compare 
them?

– This seems to be a major difference with respect to other methods, based
on square erros!

• E is minimized by gradient descent, to find locations xi.
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SNE and t-SNE: gradient

• Damping factor is similar to           in CCA and CDA:
– Large distances are less important
– Distances in the embedding space are used, to allow tears (favoring

extrusions)
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SNE and t-SNE → gradient
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SNE and t-SNE: distributions

• Why different distributions for pij and qij ?
• Remember that distances have often to be enlarged: heavier tails (in 

the embedding space) help!
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SNE and t-SNE → distributions

( ) ( ) ( )∑
=

−
+

−+
=

∂
∂ N

j
ji

ij

ijij

i
xx

nd

nqp

n
n

x
E

1
21

22 λ

xi moves 
towards xj

Similarity error –
adjusts amplitudeDamping

factor



SNE and t-SNE: distributions

• Non-trivial solution of min E
• After some (rough) approximations:

• Properties
– f is monotonically increasing
– with SNE (n → ∞):
– if δij << λi, then

• t-SNE tries to preserved streched distances
• SNE distances are scaled by λi

• n and λi act more or less in the same way
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SNE and t-SNE → distributions
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Outline

• NDLR: a historical perspective
– stress function
– intrusion and extrusions
– geodesic distances

• SNE and t-SNE
– algorithm
– gradient
– transformed distances

• Experiments
– with Euclidean distances
– with geodesic distances

• Conclusions
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Experiments

• Data: swiss roll

• Quality measures: in a K-neighborhood, we count the number of 
intrusions and extrusions.  Then
– QNX(K) measures the overall number of intrusions and extrusions 

(higher QNX(K) means better quality)
– BNX(K) measures the difference between the number of intrusions and 

extrusions (positiveBNX(K) means intrusive)

• Use of both Euclidean and geodesic distances
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Experiments



Results with Euclidean distances
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Experiments → with Euclidean distances

increasing
perplexity



Results with Euclidean distances

• Difficult problem! (low
values of QNX(K))

• t-SNE largely depends
on perplexity
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Experiments → with Euclidean distances

increasing
perplexity



Results with Euclidean distances
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Experiments → with Euclidean distances



Results with geodesic distances
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Experiments → with geodesic distances

increasing
perplexity



Results with geodesic distances

• Geodesic distances 
facilitate the task

• CCA performs well!

• t-SNE still depends
on perplexity, but 
large values help
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Experiments → with geodesic distances

increasing
perplexity



Outline
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Conclusions

• t-SNE is a distance preservation method

• Stretching distances : good idea!
• But transformation in t-SNE not always optimal (not data driven)
• Careful tuning of parameters!

• Damping factor for large distances: good idea
• But this does not solve the issue of non-Euclidean manifolds (ex: 

hollow sphere)
• Situation is better with clustered data (stretching large distances 

improves the separation between clusters)
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Conclusions
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