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“CDC’s goal is to develop a tracking system that integrates 
data about environmental hazards and exposures with 
data about diseases that are possibly linked to the 
environment. This system will allow federal, state, and 
local agencies, and others to do the following:

monitor and distribute information about environmental 
hazards and disease trends 

advance research on possible linkages between 
environmental hazards and disease 

develop, implement, and evaluate regulatory and public 
health actions to prevent or control environment-
related diseases.” 

http://www.cdc.gov/nceh/tracking/background.htm

Environmental Public Health Tracking 
in the United States



Purpose of This Study

To model the spatial and temporal association 
between myocardial infarctions (MIs) and the 
changing levels of ambient ozone in Florida 

Initial focus:  August 2005



Hospital Admission Data

Data collected by AHCA

Data sharing agreement

Available 3 to 6 months 
after end of quarter

Information on patient’s 
zip code, county, age, 
ethnicity, sex 



Florida Ozone Monitors in August 2005

56 Monitors

Data collected by FDEP

Sometimes monitor 
malfunctions and data are 
missing for one or more 
days

About a 3-month lag 
between data collection 
and completion of quality 
assurance

Meteorological data 



Population Socio-Demographic Data

Available from Census and 
BRFSS

Data available at various 
scales



Scale of Analysis

Want the smallest possible geographical and 
temporal units while satisfying confidentiality 
requirements

Decided to analyze monthly county data

Need to link the monthly data at the county level



MI Cases Per 10,000 Population
During August 2005



Indirect Standardization

Obtain Standardized Event Ratio (SER)

Adjust for 

Age (aged ≤45, 45–55, 55–65, and >65 years)

Sex (Female, Male)

Ethnicity (Black, White, Other)

Uses Florida as the Standard Population



MI SER for August 2005



Ozone Exposure

EPA’s National Ambient Air Quality Standards are 
based on the maximum 8-hour average each day. 
The daily average ozone value is used here.

Because ozone levels decline at night, daytime 
peaks might not be evident in daily averages.

To avoid peak ozone levels being further reduced by 
averaging over days of the month, the maximum 
of the daily average ozone values during a month 
was used as the monthly data value for a 
particular monitor.



Florida Ozone Monitors in August 2005



Ozone Predicted at Centroids

Legend

FL_County2000

ozonemax

26.041667 - 36.546689

36.546690 - 38.415776

38.415777 - 40.371328

40.371329 - 43.739628

43.739629 - 57.458333



Support-Adjusted Approach

Use block kriging to 
predict county 
ozone levels

Process:  
• Krige to predict at 

a grid of points
• Average over the 

points to obtain 
the county 
prediction

• Find the prediction 
error



Support-Adjusted Prediction of Ozone

Legend

FL_County2000

ozonemax

26.041667 - 36.546689

36.546690 - 38.415776

38.415777 - 40.371328

40.371329 - 43.739628

43.739629 - 57.458333



Modeled Prediction of Ozone

Hierarchical Bayesian fusion space-time statistical model 
used to combine information from the Air Quality 
System (AQS) monitoring data, and predictions from 
the Community Multi-scale Air Quality model (CMAQ). 
Predictions available on 12 and 36-km grid. 

AQS data are obtained from air monitors, which tend to 
be located in more densely populated areas. These 
measurements are assumed to have some 
measurement error, but no bias.

CMAQ model allows for covariates, such as population 
density and wind, so that the output approximates the 
variability of the true surface, but exhibits both 
measurement error and bias.



Modeled Prediction of Ozone

Legend

FL_County2000

ozonemax

26.041667 - 36.546689

36.546690 - 38.415776

38.415777 - 40.371328

40.371329 - 43.739628

43.739629 - 57.458333



Association Between MI SER and Ozone?

MI SER Support-Adjusted 
Predicted Ozone

Legend

FL_County2000

ozonemax

26.041667 - 36.546689

36.546690 - 38.415776

38.415777 - 40.371328

40.371329 - 43.739628

43.739629 - 57.458333



Predicted Ozone

Block-KrigedKriged at 
Centroids

Modeled

Legend

FL_County2000

ozonemax

26.041667 - 36.546689

36.546690 - 38.415776

38.415777 - 40.371328

40.371329 - 43.739628

43.739629 - 57.458333



Relating MI to Ozone:  Krige and Regress

where 
SERi = SER for county I
xi  is the maximum ozone level for county i
vi’ = (vi1, …, vik) are covariates for county i

are the unknown parameters 
ei is the error associated with county i

Suppose that the errors are assumed to be iid N(0, σ2).

The relative MI SER is then 
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Does the Uncertainty in Ozone Matter?

For kriging, predicted ozone       results in a 
smoother surface than the true ozone      . We 
can write

where                           is the error associated with 
predicting ozone.  This error is Berkson error 
and affects the covariance structure of the 
model.  
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Krige and Regress with General 
Covariance Structure

If ambient ozone is unknown, the model 
becomes

where                       and

Will using a general covariance structure lead to 
appropriate standard errors?
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Partial Parametric Bootstrap
In addition to the Berkson error arising from kriging, 

classical measurement error arises from estimation 
of the kriging parameters (Madsen, et al. 2008). 
Assuming the classical measurement error is 
negligible, a partial parametric bootstrap can be used 
to obtain an improved estimate of the standard error 
of      (Szpiro, et al. 2009)

Approach:

Estimate      as before

Simulate bootstrap samples using estimated 
exposure model parameters

Calculate the empirical standard deviation of the 
bootstrap      to obtain standard error of   
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What Changes when Ozone is Modeled?

Suppose the modeled estimate     is unbiased 
and has random variation about the true value

; that is, 

where       is the error associated with predicting 
ozone.  This error is classical measurement. 

When fitting the model, 

the estimate of       and it standard error are 
both biased.
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Relating MI to Ozone: Florida Data

Estimated trend surface using an exponential 

covariance structure with a range of 1 and a 

variance of 51. 

Predicted ozone

Kriged at centroids

Block kriged

Modeled and averaged over grid in county



Estimating Association between MI and Ozone: 
Florida Data

Estimated Association between MI and Ozone;
• CR: Kriged at centroids and regressed, assuming 

independent error structure

• CRGC: Kriged at centroids and regressed using a general 
exponential covariance structure

• KR: Block-kriged and regressed, assuming independent 
error structure

• KRGC: Block-kriged and regressed using a general 
exponential covariance structure

• PPB: Block-kriged and regressed with partial parameter 
bootstrap to compute standard error

• MR: Modeled values averaged over county and regressed, 
assuming independent error structure

• MRC: Modeled values averaged over county and regressed 
using a general exponential covariance structure



Estimating Association between MI and 
Ozone: Florida Data

Method

CR 0.015 0.0062 1.015 0.0063

CRGC 0.012 0.0069 1.012 0.0070

KR 0.025 0.015 1.025 0.015

KRGC 0.038 0.017 1.039 0.018

PPB 0.025 0.015 1.025 0.015

MR 0.0063 0.0039 1.0063 0.0039

MRGC 0.00087 0.0049 1.00087 0.0049



Simulating Health and Ozone

Generate realizations of ozone for 
the grid, centroid and monitor 
values using estimated trend 
surface as truth and adding error 
generated from an exponential 
covariance structure with a 
range of 1 and a variance of 51. 

Given the simulated ozone values, 
health is simulated as

where                       ; 

Health is block-kriged (averaged 
over points within county).
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Simulation of Ozone: Kriging

For each realization of 

ozone generated, all but 

the simulated values at the 

monitors are deleted. 

Predict ozone (1) at 

centroids or (2) using 

block-kriging.



Simulation of Ozone: Modeling

For each realization of 

ozone generated, keep 

only simulated ozone at 

grid points. 

To simulate an unbiased 

model with some random 

error, add independent 

N(0, 7.52) errors to each 

point and average points 

within counties.



Simulation Results: Estimating Association
Between MI SER and Ozone

Method (truth) Coverage

Probability

CR 0.18 0.00100 0.00060 0.76

CRGC 0.18 0.00097 0.00070 0.77

KR 0.20 0.0012 0.00068 0.84

KRGC 0.20 0.0012 0.00079 0.87

PPB 0.20 0.0012 0.0012 0.94

MR 0.18 0.00037 0.00044 0.78

MRGC 0.18 0.00039 0.00047 0.77



Conclusions

When regressing health outcomes on predicted 
environmental exposure, the method used to 
predict ozone matters.

If environmental exposure is predicted using 
block-kriging, the estimate of the association 
between health and environmental exposure 
obtained through regression is unbiased.

The estimates are biased if centroids or 
modeled values (even those for which support is 
considered) are used to predict environmental 
exposure.



Conclusions

For all methods, the standard errors obtained 
from regressing health outcomes on predicted 
environmental exposure are under-estimated.

The Partial Parametric Bootstrap is a method for 
correcting the standard errors. Sometimes it 
seems to work well but, as was the case here, it 
often tends to over-estimate the standard 
errors.

To date, no method proposed provides unbiased 
estimates of standard errors.



Conclusions

 Exposure of persons to ozone is the association of 
interest. Two problems:
 Ambient ozone levels serve to approximate ozone exposure.

 Data have been linked by month on the county level, but we 
want to draw inferences regarding a person’s risk for MI.

Goal of EPHT is on-going monitoring.  Existing space-
time models are not readily extendable to this 
setting.

 Bayesian models tend to be problem-specific and can 
not readily be adapted for different variables, 
locations, time, etc.



Conclusions

 The process of relating public health to 
environmental factors, from data collection through 
interpretation, is challenging. 

 Standardized analytical approaches should be 
adopted if the process is to become routine. 


